Please note: The information displayed here is current as of Sunday, June 20, 2021, but the official Course Catalog should be used for all official planning.

2020-2021 Course Catalog


This catalog was created on Sunday, June 20, 2021.


Professor:E. De Stasio (The Raymond H. Herzog Professor of Science Biology)
Associate professors:S. Debbert (Chemistry), K. Dickson (Biology, chair), D. Martin (Physics)

Biochemistry is the study of biological phenomena at the molecular level. Specifically, the scientific principles explored in chemistry and physics are related to the biology of organisms or communities of organisms. Although scientists have been fascinated with the molecules that compose living organisms for more than 200 years, biochemistry was finally recognized as a discipline at the beginning of the 20th century, as scientists strove to understand nutrition and metabolism in the context of human disease. Modern biochemistry is a vast subject that has applications to medicine, dentistry, agriculture, forensics, toxicology, pharmacy, anthropology, environmental science, and other fields.

Biochemistry is a dynamic and highly technical field. A degree in biochemistry presents students with many options for careers or advanced study. The biochemistry major will prepare students for graduate study in biochemistry (or related biomedical fields such as bacteriology, molecular biology, or immunology) as well as for many pre-professional programs of study, such as forensic science or pharmacy.

The biochemistry curriculum includes a strong foundation in the basic sciences, core courses central to the field, and electives that enable students to explore aspects of biochemistry in sub-fields of their choice. Most courses include an intensive laboratory experience, supported by equipment in biology, chemistry, and physics. Experimental work becomes progressively more sophisticated and creative in advanced courses as students gain insight to the primary literature and cutting-edge laboratory techniques. Students are strongly encouraged to engage in summer research, either in an academic setting—at Lawrence or another institution—or in industry.

The vision of a biochemistry Senior Experience is best described by a report by the Association of American Colleges and Universities (AAC&U), Greater Expectations: A New Vision for Learning as a Nation Goes to College. A biochemistry major at graduation should be an “intentional learner who can adapt to new environments, integrate knowledge from different sources, and continue learning throughout their life. They should also become empowered learners through the mastery of intellectual and practical skills by learning to effectively communicate orally, and in writing; understand and employ quantitative and qualitative analysis to solve problems; interpret and evaluate information from a variety of sources; understand and work within complex systems; demonstrate intellectual agility and the ability to manage change; transform information into knowledge and knowledge into judgment and action.” Biochemistry majors can attain these skills in either the Biology or Chemistry Senior Experience course sequences.

Required for the major in biochemistry

Students who complete the major will be able to explain major concepts in biochemistry, including the structure/function relationship in molecules and the evolutionary forces that shape those molecules, processes of energy conversion in organisms, and processes of information storage and transfer in organisms. They will learn to critically analyze scientific literature and to conduct biochemical research.

The major in biochemistry requires the following:

Foundation courses:

  1. CHEM 116: Principles of Chemistry
  2. CHEM 250: Organic Chemistry I
  3. BIOL 130: Integrative Biology: Cells to Organisms
  4. Either:
    • MATH 140: Calculus I, or
    • MATH 120 and 130: Applied Calculus I and II
  5. One of the following:
    • BIOL 170: Experimental Design and Statistics
    • CHEM 210: Analytic Chemistry
    • Statistics in the math department over the 200 level
  6. PHYS 141: Principles of Classical, Relativistic, and Quantum Mechanics
  7. PHYS 151: Principles of Classical Physics
  8. Senior Experience courses — Please see description in the respective departmental portions of the course catalog
    1. CHEM 380 (1 unit S/U)
    2. CHEM 480 (2 units S/U)
    3. CHEM 680 (3 units S/U)
    1. BIOL 650 (5 units and 1 unit)
    2. Fall and Spring Terms BIOL 600 or equivalent (1 unit S/U each)

Core courses:

  1. BIOL 354: Molecular Biology
  2. CHEM 340: Biochemistry I (cross-listed as BIOL 444)
  3. CHEM 440: Biochemistry II or BIOL 465: Advanced Biotechnology
  4. Elective courses: Students must choose three courses from the list below, including at least one CHEM and one BIOL. One of the three must be a laboratory class.
    • Biology courses:
      • BIOL 226: Microbiology
      • BIOL 235: Evolutionary Biology
      • BIOL 325: Cell Biology
      • BIOL 340: Topics in Neuroscience (also PSYC 580)
      • BIOL 360: Introduction to Bioinformatics
      • BIOL 430: Immunology or BIOL 431: Immunology (lecture only)
      • BIOL 450: Special Topics with advisor permission
      • BIOL 453: Developmental Biology
      • BIOL 510: Modern Concepts of Embryogenesis
      • BIOL 520: Cancer Biology
    • Chemistry courses:
      • CHEM 210: Analytical Chemistry
      • CHEM 252: Organic Chemistry II
      • CHEM 320: Inorganic Chemistry
      • CHEM 350: Bioorganic and Medicinal Chemistry
      • CHEM 370: Chemical Dynamics
      • CHEM 410: Instrumental Analysis
      • CHEM 450: Topics in Advanced Organic Chemistry
    • Other:
      • PSYC 350: Psychopharmacology and Behavior
      • PHYS 570: Biological Physics
      • CMSC 205: Data-Scientific Programming

On-line coursework cannot be transferred to fulfill these requirements.

Students interested in chemistry-focused graduate programs or careers are encouraged to take CHEM 210: Analytical Chemistry and CHEM 370: Chemical Dynamics. Students interested in molecular biology-focused careers or graduate programs are encouraged to take BIOL 260: Genetics and BIOL 325: Cell Biology.

Courses - Biochemistry

CHEM 116: Principles of Chemistry: Energetics and Dynamics

Introduction to the study of chemistry, for students who have taken high school chemistry or CHEM 115, emphasizing structural and quantitative models of chemical behavior. Topics include bonding, thermochemistry, equilibrium, kinetics, and related applications. Three lectures and one laboratory per week. Enrollment is determined by placement examination for students who have not completed CHEM 115. See the chemistry department's web page for placement examination information.
Units: 6.
Prerequisite: CHEM 115 or placement examination

MATH 120: Applied Calculus I

A course in the applications of mathematics to a wide variety of areas, stressing economics and the biological sciences. Topics may include recursive sequences and their equilibria, the derivative of a function, optimization, fitting abstract models to observed data. Emphasis placed on algebraic and numerical techniques and on understanding the role of mathematical thinking. Mathematics 120 and 130 do not prepare students for more advanced courses in mathematics.
Units: 6.
Prerequisite: Three years of high school mathematics;

BIOL 130: Integrative Biology: Cells to Organisms

An exploration of fundamental cellular processes in an evolutionary context including homeostasis, cell cycle, gene expression, energy transformation, inheritance, and multi-cellular development. Experimental approaches will be emphasized. Lecture and laboratory.
Units: 6.

MATH 130: Applied Calculus II

A continuation of math 120. Topics may include the indefinite and definite integral, elementary linear algebra including matrix arithmetic and solving linear equations, vectors, partial derivatives, Lagrange multipliers. Both algebraic and numerical computations.
Units: 6.
Prerequisite: MATH 120 or the equivalent

MATH 140: Calculus

Functions, limits, derivatives, the Mean Value Theorem, definition and properties of integrals, the Fundamental Theorem of Calculus, and applications to related rates, curve sketching, and optimization problems.
Units: 6.
Prerequisite: Minimum score on ALEKS online diagnostic exam, as set by the department.

PHYS 141: Introduction to Physics I

A calculus-based introduction to fundamental concepts in mechanics, from Galileo and Newton through relativity and quantum mechanics. Weekly laboratories emphasize the acquisition, reduction and interpretation of experimental data and the keeping of complete records. Explicit instruction in calculus will be provided.
Units: 6.
Prerequisite: None, but calculus is recommended.

PHYS 151: Introduction to Physics II

A continuation of Physics 141. Physics 151 offers a brief review of mechanics, and covers electricity, magnetism, circuits, waves, optics and thermal physics. Weekly laboratories emphasize the acquisition, reduction, and interpretation of experimental data and the keeping of complete records.
Units: 6.
Prerequisite: PHYS 141, or one year of high school physics and MATH 140.

BIOL 170: Integrative Biology: Experimental Design and Statistics

An introduction to experimental and sampling design in the fields of biology and biochemistry, as well as methods of data analysis and interpretation. The connection between statistical analysis and experimental design will be emphasized. Topics include descriptive, exploratory, and confirmatory statistical analyses. Lecture and computer laboratory.
Units: 6.
Prerequisite: BIOL 150 or consent of instructor

CHEM 210: Analytical Chemistry

A course in the quantitative description of chemical equilibria in solution (acid-base, complexation, redox, solubility) using classical, separation, electrochemical, and spectrochemical methods of analysis. This course covers methods of quantification, statistics, and data analysis as applied to modern chemistry. Students will have the opportunity to individually design projects. Three lectures and two laboratory periods per week.
Units: 6.
Also listed as Environmental Studies 250
Prerequisite: CHEM 116, placement exam, or consent of instructor; concurrent enrollment in CHEM 211 required

BIOL 226: Microbiology

A study of microbial life with an emphasis on prokaryotes. Microbial physiology is examined in the context of how unique characteristics allow microbes to exploit a vast diversity of environments, including the human body. Laboratory exercises introduce students to techniques used to safely study microorganisms.
Units: 6.
Prerequisite: BIOL 130 and BIOL 150, CHEM 116 recommended

BIOL 235: Evolutionary Biology

A study of biological evolution, including natural selection, adaptation, the evolution of sex, speciation, extinction, and constraints on evolutionary change. Reading primary literature is emphasized. Two lectures and one discussion per week.
Units: 6.
Also listed as Environmental Studies 213
Prerequisite: BIOL 130 or ANTH 140

CHEM 250: Organic Chemistry I

A study of the relationship between structure and function in organic compounds. Basic topics such as molecular orbital theory, conformational equilibria, stereochemistry, and nucleophilic substitution are covered. Students also learn to use instrumental analysis (NMR, IR, GC-MS) to identify and characterize compounds. One four-hour laboratory per week.
Units: 6.
Prerequisite: CHEM 116 or 119 or consent of instructor

CHEM 252: Organic Chemistry II

A study of organic reactions and their mechanisms. The focus of the class is synthesis, both in the concrete sense of building molecules and in the abstract sense of pulling together disparate concepts to solve problems. Case studies from the polymer and pharmaceutical industries underline the relevance of the discipline to everyday life. One four-hour laboratory per week.
Units: 6.
Prerequisite: CHEM 250

CHEM 320: Inorganic Chemistry

A survey of structures, properties, reactivities, and interrelationships of chemical elements and their compounds. Topics include unifying principles and concepts that enable the interpretation of experimental data associated with materials. Emphasis on multidisciplinary aspects of inorganic chemistry. Lectures and weekly laboratory. Laboratory projects involve synthesis and studies of compounds using a variety of experimental methods.
Units: 6.
Prerequisite: CHEM 250

BIOL 325: Cell Biology

Survey of the structure and function of eukaryotic cells, the basic functional unit of life. Correlation of cellular structures including organelles, proteins, and membranes with functions such as cellular communication, division, transport, movement, and secretory pathways will be analyzed. Lecture and laboratory.
Units: 6.
Prerequisite: BIOL 130 and BIOL 150, BIOL 170 recommended

BIOL 340: Topics in Neuroscience

A study of the nervous system from the perspectives of psychology and biology. Topics vary year to year and may include glial cells, neural development, and the evolution of nervous systems and neurotransmitter systems. Lecture only. May be repeated when topic is different.

Topic for Fall 2020: Microbes and the Brain
Research conducted largely within the past 10 years has shown a bidirectional network linking microbial populations in the mammalian digestive system to certain neurological processes of the brain. This “crosstalk” between the gut and brain is facilitated by a variety of direct and indirect pathways, including direct neuronal connections, signaling pathways, and immune responses. This course will rely exclusively on primary- and review-based literature with an attempt to explore these processes along with their respective developmental and evolutionary contexts.
Units: 6.
Also listed as Psychology 580
Prerequisite: CHEM 116, BIOL 150 and one course in psychology; or PSYC 360 and one course in biology; or consent of instructor

CHEM 340: Biochemistry I

An introduction to the study of biological processes at the molecular level with emphases on protein struction and function, enzyme mechanism and kinetics, fundamentals of physical biochemistry, and the chemistry of biological molecules, including carbohydrates, lipids, and nucleic acids.
Units: 6.
Also listed as Biology 444
Prerequisite: CHEM 250 or concurrent enrollment, or consent of instructor

PSYC 350: Psychopharmacology and Behavior

An interdisciplinary examination of the ways in which behaviorally active drugs exert their effects, drawing on research in pharmacology, psychology, biochemistry, anatomy, and neurophysiology. Provides an understanding and appreciation of the role of behaviorally active drugs in people’s lives, today and in the past.
Units: 6.
Prerequisite: Sophomore standing; at least one prior biology course recommended

BIOL 354: Molecular Biology

An interdisciplinary examination of regulatory mechanisms leading to differential gene expression. Main topics include transcription, translation, gene and protein structure, and modern genomics. The application of current molecular techniques is emphasized throughout the course. Laboratory work is experimental in approach. Lecture and laboratory.
Units: 6.
Prerequisite: BIOL 130 and CHEM 115

CHEM 370: Physical Chemistry: Thermodynamics and Kinetics

Develops and explores theoretical descriptions of chemical systems: physical states, the laws of thermodynamics as applied to chemical and physical equilibria, chemical reaction kinetics, and catalysis. No laboratory.
Units: 6.
Prerequisite: MATH 150, PHYS 150, CHEM 116; or consent of instructor

CHEM 380: Seminar: Perspectives on Chemistry

A series of presentations by visiting chemists and Lawrence students, faculty, and staff, featuring current issues in chemistry, important applications of chemistry, and professional development topics appropriate to chemistry majors or minors. Approximately one meeting per week. Two or more short “reaction papers” (a short seminar critique or summary) required of each student. Offered annually in the Fall Term. May be repeated for credit.
Units: 1.
Prerequisite: Sophomore standing; offered annually in the Fall Term

CHEM 410: Instrumental Analysis

An advanced course in instrumental methods of quantification and identification in modern chemistry. Emphasis on instrument design, operating principles, interpretation of instrumental data, and discrimination between techniques. This course focuses on spectroscopic, chromatographic, and electrochemical techniques and their application in fundamental and applied research. Students will have the opportunity to individually design projects. Three lectures and one laboratory per week.
Units: 6.
Prerequisite: CHEM 210 or consent of instructor

BIOL 430: Immunology

This course will cover the basic concepts of immunology, including differentiation of immune cells, antibody structure and function, antigen-antibody reactions, the major-histocompatibility complex, the complement system, immune responses to pathogens, allergies and auto-immune diseases, and comparative immunology. The course will also examine recent advances in the field through current peer-reviewed publications. The weekly laboratory will examine the basic questions, experimental subjects, and procedures of the field.
Units: 6.
Prerequisite: BIOL 130, BIOL 150, and junior standing; or consent of instructor

CHEM 440: Biochemistry II

A continuation of Biochemistry I. A study of biological processes at the molecular level with an emphasis on metabolic pathways, recent advances in biochemical medicine, and biochemical aspects of gene replication, protein synthesis, molecular motors, and sensing. The course is divided between lecture and discussion and will rely heavily on current biochemical literature.
Units: 6.
Also listed as Biology 455
Prerequisite: CHEM 340 or consent of instructor

BIOL 444: Biochemistry I

An introduction to the study of biological processes at the molecular level with emphases on protein struction and function, enzyme mechanism and kinetics, fundamentals of physical biochemistry, and the chemistry of biological molecules, including carbohydrates, lipids, and nucleic acids.
Units: 6.
Also listed as Chemistry 340
Prerequisite: CHEM 250 or concurrent enrollment, or consent of instructor

CHEM 450: Topics in Advanced Organic Chemistry

A study of modern topics in organic chemistry, emphasizing current literature. Topics may vary from year to year, but the class typically covers organic synthesis in depth. Students will often use the literature and their own expanding understanding of chemical reactivity to design synthetic routes to complex drugs and natural products. No formal laboratory; lab exercises may occasionally substitute for lectures.
Units: 6.
Prerequisite: CHEM 252 or consent of instructor

BIOL 453: Developmental Biology

An experimental approach to animal development with laboratory and lecture emphasis on molecular and cellular processes of embryogenesis. Includes discussions of pattern formation, differentiation, cell interactions, gametogenesis and fertilization. Lecture and laboratory.
Units: 6.
Prerequisite: BIOL 150; and one of the following (or concurrent enrollment): BIOL 354, BIOL 444/CHEM 340, BIOL 260, or BIOL 325

CHEM 480: Seminar: Chemical Literature

A seminar course intended primarily for junior majors and minors in chemistry. Students learn the character and organization of the chemical literature and become familiar with search strategies, as each selects a topic and, guided by the instructor, conducts a literature search for key papers on that topic, constructs an annotated bibliography, reads several of the most important of the papers, and prepares an end-of-term presentation highlighting key research findings related to their chosen topic.
Units: 2.
Prerequisite: Junior standing, or consent of instructor

PHYS 500: Special Topics in Physics

Treats selected topics, such as relativity, fundamental particles, fluid mechanics, and surface physics that vary according to the interests of students and staff.

Topic for Fall 2020: General Relativity
This course will explore General Relativity, “one of the greatest triumphs of the human mind.” Along the way, students will come to an appreciation for and understanding of this phrase and of the physics it describes, as well as black holes, event horizons, gravitational waves, and the cosmic microwave background. Prerequisite: PHYS 230, MATH 210
Units: 6.
Prerequisite: PHYS 230, MATH 210

PHYS 570: Biological Physics

Develops and explores the physical principles underlying biological systems, with a particular emphasis on building quantitative models. Applies fundamental topics including thermodynamics, fluid dynamics, elasticity, and electrostatics to model molecular and cellular phenomena such as gene expression, virus assembly, DNA bending and stretching, and nerve impulses.
Units: 6.
Also listed as Biology 570
Prerequisite: PHYS 151, and one of PHYS 230, CHEM 252, CHEM 340, or BIOL 354

BIOL 650: Biology Senior Capstone

Senior capstone in which students will benefit from direct input and feedback on their scientific writing and oral presentation skills as they complete senior experience projects and papers. Successful completion of BIOL 650 includes participation in BioFest, a symposium of biology senior experience projects during spring term.
Units: 1 OR 5.
Prerequisite: Major in biology or biochemistry, or in neuroscience with departmental approval; and senior class standing or departmental approval

CHEM 680: Senior Seminar

A seminar course for senior majors, culminating in an individual seminar presentation by each student.
Units: 3.