From: AAAI Technical Report SS-94-04. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved.

Dynamic Sensor Policies

Kurt Krebsbach

Department of Math and Computer Science

Shippensburg University
Shippensburg, PA 17257
(717) 532-1424
kdkreb@ark.ship.edu

Introduction

When an agent’s task environment is largely benign
and partially predictable (although uncertain), and the
goals involve accomplishing tasks, we can make the
agent more adaptive by planning to acquire unknown
or uncertain information during execution of the task.
Of course we pay a price for this flexibility. In this
paper we dicuss a strategy for measuring this price in
a realistic way and reducing it by making rational de-
cisions about how to acquire unknown environmental
information with imperfect sensors. Ultimately, we are
interested in a general framework for making optimal
sensor decisions which will minimize a cost (or set of
costs) we expect to incur by employing sensors.

In particular, we propose to generate a tree of pos-
sible sensing policies offline (using dynamic program-
ming), cache the optimal sensor decisions at each level,
and subsequently use actual world states as indexes into
this structure to make a rational sensor choice online.
Because no states are discarded in the dynamic pro-
gramming process (only non-optimal paths), we are al-
ways guaranteed of having earlier cached an optimal
decision for each state we anticipate possibly encoun-
tering at execution time. This combination of offline
and online computation allows the sensor selection pro-
cess to be sensitive to actual events, while making use of
assumptions and regularities inherent in the structure
of the domain.

The work presented here builds on some of our ear-
lier work in which we have discussed strategies for static
(i.e., offline) sensor scheduling [Krebsbach et al., 1992,
Olawsky et al., 1993], and in which we have used tech-
niques similar to these to combat the inherent computa-
tional complexity of the problems involved [Krebsbach,
1993]. Many of these ideas have been suggested by oth-
ers employing decision-theoretic methods for a wide va-
riety of optimization and control problems, including
those related to planning and sensing [Bellman, 1957,
Boddy, 1991b]. Boddy proposes the use of dynamic pro-
gramming for constructing anytime algorithms [Boddy,

74

Maria Gini
Computer Science Department
University of Minnesota
4-192 EE/CSci Building
200 Union Street SE
Minneapolis, MN 55455

giniQ@cs.umn.edu

1991a). Hager and Mintz [1991] have proposed methods
for sensor planning based on probabilistic madels of un-
certainty. Abramson [1991] casts sensory integration as
a decision problem and presents a formula for deciding
how often to sense, depending on the rate of change of
the environment. Goodwin and Simmons [1992] use a
decision-theoretic approach to incorporate the achieve-
ment of a new goal into a partially executed plan, and
Chrisman and Simmons employ Markov Decision Pro-
cesses in order to handle a significant amount of uncer-
tainty in the outcomes of actions [1991].

General Methodology
We intend in this work to demonstrate in a general way
how to endow a planner with a mechanism for making
cost-effective choices about gathering uncertain infor-
mation necessary to continue planning. Conceptually,
the general method we advocate can be described in the
following steps:

1. Choose a planning problem and decide what in-
formation will be unknown (or uncertain) to the
planner at the start of planning. If this is most of the
information in the domain it is possible that planning
does not make sense, and a more reactive approach
may be warranted. However, a more important con-
sideration than the amount of unknown information
is its type. .

There are two considerations here. The first is
whether or not the unknown information relates
in a straightforward way to the goals. If so,
since we can choose a goal ordering in advance, we
can determine the order in which the unknown infor-
mation will be needed. Even if the exact order is not
completely determined, it may be possible to at least
determine the type of information needed at each de-
cision point. If this is reasonable, we can then treat
the sensor selection problem as a sequential decision
problem and apply the methods described shortly.

A second consideration is the degree to which
goals interact. Some of our earlier work involves do-

mains deliberately designed so that actions for solv-
ing one goal may adversely affect the achievement
of another. In this paper we describe how to com-
pute these costs and tradeoffs in another domain with
somewhat different characteristics.

2. Adding sensors to the plan will increase effort in some
way. Since it is likely to increase effort in a number
of ways, it is necessary to determine one crite-
rion or a combinable set of criteria (e.g., diag-
nostic cost and printer availability gain) to optimize.
In the example shown later we use a complex varia-
tion on minimizing execution cost. Other examples
might include reducing planning cost or increasing
the probability of generating plans which contain no
unnecessarily redundant actions.

3. A connection must be made between our sensor
choices and their effect on the parameter(s) we are
trying to optimize. This can be done empirically or
analytically. We employ analytic means for illustra-
tion here.

4. Among the most difficult aspects of making this ap-
proach useful is to develop a computationally fea-
sible way to compare alternative sensor schedules in
order to make an optimal decision at each decision
point. We take the approach of casting the problem
of dynamic sensor selection as a sequential decision
problem. We can then use the method of stochas-
tic dynamic programming to make the computation
involved polynomial rather than exponential. This
involves a number of steps. The most important of
these steps involve defining cost functions from one
state to another via a sensor decision, state abstrac-
tions, and state transitions. These steps will now
be discussed.

Sensor Policies

A sensor policy tells an agent what decision to make at
each sensor decision point. If the decision is not made
until the decision point is reached during execution, we
call the policy dynamic. Constructing a sensor policy
for a planner can be viewed as a sequential decision
problem (SDP)! [Ross, 1983, Boddy, 1991b]. There are
a number of characteristics of sequential decision prob-
lems which serve to categorize them.

Discrete vs. Continuous: A particular decision is
said to be discrete if the effect of a decision is to
choose one of a finite, or at least countable set of pos-
sibilities. A decision is continuous otherwise. Since
we are concerned with choosing among a small set of
sensor strategies, we focus on the discrete case.

Deterministic vs. Stochastic: When the outcome
of a given decision is certain (i.e., uniquely deter-
mined by the choice of this decision), the process is

1Sequential decision problems are a special case of so-
called multi-stage decision problems[Bellman, 1957).

75

said to be deterministic. The aim of solving deter-
ministic SDPs is to find the decision policy that max-
imizes the value of a sequence of decisions. In our
case, maximizing value is equivalent to minimizing
cost. The problem becomes more complex when the
outcome of a given decision is uncertain. For these
problems, known as stochastic SDPs, each decision
is treated as a random variable with an associated
probability distribution. This distribution is a func-
tion describing the probabilities of various outcomes
of a given decision. For stochastic SDPs, the aim be-
comes maximizing the ezpected value of a sequence of
decisions. We focus on the stochastic case since we
must evaluate sensor policies based on expected cost.

Formal Statement of the Problem

We have described how sensor policy construction can
be viewed as a discrete, stochastic sequential deci-
sion problem. Stochastic dynamic programming [Ross,
1983] is a solution methodology for problems of this
sort. We now formally describe the components of our
problem as a sequential decision problem.

o Let S be the set of states the system can assume.
While it may appear this would include all possible
world states, much of the information included in a
particular state in that space has no direct relevance
to an impending sensor decision. Thus, we restrict
our attention to a subset of that information, which
varies from domain to domain. We also make use of
precomputed cost profiles of various types of failures.
We will call this reduced world model, a simplified
world model, (SWM), and a state in it a simplified
world state (SWS).

o Let O be the set of sensor options to choose from
at a given decision point d;.

o Let D be the set of decisions to be made. For our
purposes, this set is more specifically an ordered se-
quence of sensor decisions D = {di,ds,...,d,}. A
solution to the problem will consist of an n-element
vector of decision choices.

o Let ¢ : S x D — S be a function mapping from
the current state and a decision to the next
state.

e Let C: S XD — R be a cost function mapping
from the current state and a decision to the real
numbers?. Conceptually the cost function represents
the expected execution cost that a given decision in a
given state implies. Of course, the resulting solution
is highly dependent on our choice of cost function,
which must take into account the probability of suc-
cess of its decision, and the expected costs resulting
from its decision. The cost function can be thought of

2This is traditionally called the reward functionin oper-
ations research.

as a numerical representation of the relative advan-
tages and disadvantages of one sensing policy over
another.

Dynamic Programming

Dynamic programming is a mathematical technique of-
ten useful for making a sequence of interrelated de-
cisions [Hillier and Lieberman, 1980]. In contrast to
linear programming, there does not exist a standard
mathematical formulation of the dynamic programming
problem. It is a more general type of approach to prob-
lem solving in which the particular equations used must
be carefully crafted to fit the problem domain.

All dynamic programming problems, however, do
share a number of basic characteristics, which are now
briefly summarized and related to the problem of sensor
policy construction.

Fundamental Characteristics

1. The problem can be divided into stages, with a pol-
icy decision required at each stage. For sensor pol-
icy construction, each stage corresponds to a point
at which a single-point sensor policy decision must
be made.

2. Fach stage has a number of states associated with
it. These of course are the Simplified World States
discussed earlier. They contain information sufficient
for making sensor policy decisions.

3. The effect of the policy decision at each stage is to
transform the current state into a state associated
with the next stage (in this case, according to a prob-
ability distribution). The function ¢ provides this
transformation.

4. Given the current state, an optimal policy for
the remaining stages is independent of the policy
adopted in previous stages. This crucial property
means that knowledge of the current state of the sys-
tem conveys all the information about its previous
behavior necessary to make optimal policy decisions
from that stage on. It is sometimes referred to as the
principle of optimality [Bellman, 1957), and is a spe-
cial case of the Markovian property, which states that
the conditional probability of any future event, given
any past event and the present state is independent
of the past event and depends only upon the present
state of the process.

5. The solution procedure begins by finding an optimal
policy for each state of the final stage. This is often
trivial. For instance, in the domain we discuss, this
is simply the time slice before the scheduling period
ends.

6. A recursive function is available which identifies
an optimal policy for each state at stage ¢, given an
optimal policy for each state at stage ¢ + 1. For our
purposes, finding an optimal (one step) decision from
each state in stage i involves computing the least

76

costly path from each state in stage ¢ to the relevant
states in stage ¢ + 1, and then finding which decision
at each state minimizes overall cost to a goal state.
The overall cost can be computed by adding each one-
step cost to the accumulated (backed up) cost from
the relevant successor state to the goal. All other
(state, decision) pairs can be discarded if the princi-
ple of optimality holds. This is where a great deal of
computation and storage is saved by using dynamic
programming. The function that identifies an opti-
mal policy for each state at stage ¢ is traditionally
expressed as:

fi(s) = min{css, + fiy1(2i)} (1)

where

z; is the choice of action made at decision point 1.
Csz; 1s the cost of the transition from state s at stage
i to a state in stage 7 + 1 by choosing action z;.

An optimal policy then, consists of finding the mini-
mizing value of z;.

7. Using this recursive relationship, the solution proce-

dure moves backward stage by stage, each time de-
termining an optimal decision for each state at that
stage which optimizes the sequence of decisions from
that state forward. This continues until it finds an
optimal decision at the initial stage. Note that in-
tuitively this entails caching optimal policies corre-
sponding to longer and longer sequences of decisions,
in this case, sensor policies.

While it is possible to proceed from the first to fi-
nal stage (forward) for some dynamic programming
problems, it is generally not possible when stages cor-
respond to time periods. This is because possibly
optimal sequences of decisions might be discarded if
they look more costly early on when some commit-
ments must be made about optimal subsequences of
decisions. However, this is never a problem when
working backward from the final to initial stage as
long as the principle of optimality holds, since an op-
timal policy to each state in the current stage, while
not yet determined, can be assumed optimal.

Stochastic Sensor Selection

Figure 1 contains the algorithm for constructing
stochastic sensor policies. The algorithm is fairly
straightforward. The outer loop moves moves the pro-
cess backward from the final stage to the initial stage.
All possible states at each stage are then generated and
stored in the list S;. From each of these stages, we
must compute the expected one-step cost of making
each possible decision, add these one-step costs to the
accumulated cost for each resulting state, and cache the
decision which yields the minimum value.

In most domains, the run-time behavior of the sensors
(i.e., whether they actually succeed or fail) will greatly
influence the overall cost of executing a plan containing

Procedure Stochastic(States, Stages, SensorOptions)

For ¢ — Stages downto 1

begin
Si «— PossibleStates(s)
For s in S;
begin
Comin — 0
For d in SensorOptions
begin
State ProbPairs — ProjectStoch(s,d)
Cr—20
For Pair in StateProbPairs
begin
Pi — prob(Pair)
S! — state(Pair)
C1 — C1+ Pt - CostSoFar(Sr)
end
begin
Chin — C! ; Best so far?
dmin — d ; Optimal decision
end
end

CostSoFar(s) «— Cpin
Cache dnin as optimal decision at (3, s)
end

end

;;; Make Optimal Sensor Decisions as Execution Proceeds

Path,,n «— NIL
CurState — 8;init

For i — 1 to Stages
begin
d — GetCachedDecision(i, CurState)
Pathmin — Append(Pathmin, d)
CurState — Ezecute(CurState,d)
end

Return(Pathmin)

Figure 1: Stochastic Sensor Scheduling

77

sensor operations. In this case, the best we can do is
minimize expected execution cost, and model this cost
probabilistically. For this reason, the projection func-
tion must return not a single state, but a probability
distribution over the set of possible states that could
result. (We have named this function ProjectStoch to
make the distinction clear.) Each member of this set
of (Probability, State) pairs is then evaluated to deter-
mine the contribution each possible result will have on
making an optimal decision.

Finally, the optimal decisions at each level are cached
and used at execution time to make the proper context-
dependent, online sensor decisions.

The Printer Diagnostics Domain

We now demonstrate our method with a fairly simple
example. Imagine the following domain, which we will
call the Printer Diagnostics Domain (PDD): A large
software house has a row of n laser printers for use by
its programmers and staff. These printers periodically
break down, but when these printers will require service
is completely random and unpredictable. A computer
program polls each of the n printers every 15 minutes
and reports whether or not a printer has changed sta-
tus from operational to down. To make the simulations
more understandable, we will assume only one printer
failure can be detected per 15-minute time slice (al-
though a second failure could be noticed in the next
time slice). The total number of down printers is lim-
ited only by the total number of printers (n).

The first step in determining the proper course of ac-
tion to repair a broken printer involves diagnosing the
problem. This can be viewed as a context-dependent
sensor selection process, where choosing whether and
which diagnostic tests need to be performed is equiva-
lent to choosing whether and which sensors need to be
fired.

The task of the dynamic programming algorithm is
to determine an optimal diagnostic to run (if any) to
minimize the amount of wages to pay service personnel
while maximizing the amount of printer-hours available
for use by the programmers and staff. We will discuss
the relevant cost functions involved shortly.

First however, we wish to point out that the PDD
differs from other pure (although uncertain) planning
domains we have previously studied in several impor-
tant respects.

Sources of Uncertainty
In the PDD, there are two types of uncertainty:

1. Environmental Uncertainty, which consists of the
agent not knowing for a given time slice whether a
printer will go down or not. In the PDD the agent
has no expectations to go on (i.e., no default values)
because printers are assumed to go down in a purely
random fashion. The best the agent can do is de-
cide on the best diagnostic to use (if any), given the
context when a printer does fail.

2. Sensor Uncertainty, which consists of not knowing
if a certain diagnostic test (sensor) will be sufficient
to isolate the printer’s problem and facilitate a re-
pair. This uncertainty is a probabilistic function of
the diagnostic test chosen.

Diagnostics as Sensors

In the PDD, at each decision point a diagnostic test
is chosen, which takes some amount of time. Let O
be the set of sensor options to choose from at a
given decision point d;. For the PDD, this is the set
0O = {NA,S3,56,59}, which stand for no action, or
one of the three actual diagnostic tests. In each of the
problems, diagnostic S3 has a duration of 3 time units,
S6 lasts 6 time units, and S9 lasts 9 time units. Of
course NA has a duration of 0 time units. It is also the
case that the reliabilities of the diagnostics are better
for longer diagnostics, as one would expect.

When a diagnostic action is administered, the cor-
rect repair action is either determined (a positive test)
or it is still undetermined (a negative test). A posi-
tive test corresponds to a correct sensor reading while
a negative test corresponds to a failed sensor reading
after which we may want to acquire the requisite in-
formation in some other way. This is accomplished by
determining the context in the current time slice, and
looking up the optimal sensor option for this context in
the precomputed lookup structure.

Leaving Some Environmental Information
Unknown

In some domains, the agent must eventually acquire all
unknown environmental information in order to achieve
its goals. This is not the case in the PDD. If it is more
cost-effective to let one or more of the n printers stay
down for the rest of the monitored time period rather
than diagnose it, then the relevant unknown informa-
tion might never be acquired.

Variable-Duration Diagnostics

Since some diagnostics can take a long time, much can
happen in the environment while a single test is be-

ing run. Other printers can break down, workers can

leave work for the day, and so on. For this reason, fol-
lowing a prescribed sequence of sensor strategies is not
very sensitive to the context in which they may even-
tually be employed. That feature is what makes this a
good domain for dynamic sensor policies, in which we
can make local context-dependent choices about sensors
which optimize some global parameter.

Factors Influencing Sensor Choice

A number of factors influence optimal sensor choices.
These factors can be roughly divided between state vari-
ables and domain features.

78

State Variables

We have identified four state variables, which when con-
sidered together, make up the Simplified World State
representation for the PDD. '

S:Stage The current stage number. Each stage repre-
sents the end of a 15-minute time slice.

J:Jobs The number of diagnostic jobs currently in
progress. This number has an upper bound which
reflects the service personnel resources available. For
our simulations we have set this upper bound (max
jobs) to be 5.

L:Load The total number of 15-minute time slices cur-
rently allotted for the J jobs. Since diagnostics have
differing durations, the load falls in the range

J € L < maz — duration - J

for a given value of J. Maxz—duration is the duration
of the most expensive diagnostic. In our simulations,
the most expensive diagnostic, S9, has a duration of

9.

D:Down The number of printers down which have not
been scheduled for diagnostics. This is limited only
to the number of printers that exist.

Domain Features

Duration: The expected time needed to run each diag-
nostic test. This number is rounded off to the nearest
quarter hour.

Probability of Success (P(D)):
The probability that running this diagnostic test will
fully determine the problem. This is represented as
a real number on the inclusive range [0.0 1.0] and is
rounded to the nearest tenth.

Gain to Cost Ratio (y): In order to compare costs
due to running diagnostics (measured in time slices of
work scheduled) and the gain derived from having a
down printer back up for some amount of time (mea-
sured in time slices of operationality), we express the
relative worth of these two quantities in the gain-lo-
cost ratio. This parameter is used in the cost function
C, discussed shortly.

Cost Multiplier (u(stage)): We assume diagnostics
are cheaper to run during some times of the day than
during others. The idea here is that service personnel
are paid their normal wage during normal business
hours, time and a half from the end of the work-
ing day until midnight, and double time in the early
morning hours. Thus, the cost-multiplier function
multiplies the base cost by the appropriate constant
for. the periods to be spanned by the scheduled di-
agnostic test. Qur algorithm automatically splits the
stages into three roughly equal periods for which each
of 2.0, 1.0, and 1.5 are appropriate multiplier con-
stants.

[Domain Predicate |

—(TIME 8:45) (PR-1 UP)
(PR-2 DOWN)
(PR-3 UP)
(PR-4 DOWN)
(PR-5 DOWN)
(UNDER-REPAIR PR-3)
(UNDER-REPAIR PR-5)
TIME-REMAINING PR3 4)
(TIME-REMAINING PR-5 1)
(UNSCHEDULED PR-2)

Table 1: Snapshot of 5-Printer Problem World State.

[Domain Factor | Value |
Stage (s) 35
Jobs 1n progress (j) 2
Load = total resources scheduled (I) 5
Down (printers down & unscheduled) (1) 1

Table 2: Snapshot of 5-Printer Problem Simpified
World State.

Importance Coefficient(:(d)):
The degree to which diagnosing remaining printers
that go down becomes important increases with the
number of printers already down. We define the im-
portance coefficient (1) as follows:

1 ifd<1
ud) = l—_—ﬂq— otherwise

mazx

Number of Stages (n): Clearly, the number of
stages has a bearing on which diagnostics make sense.
We enforce the constraint that all scheduled diagnos-
tics be completed by the end of the last time slice, so
a diagnostic with a duration of 9 time slices is really
never appropriate for a problem of only 10 stages, for
instance.

The Simplified World Model: Defining ¢

Since the function ¢ : § x D — & provides a map-
ping from a current SWS to the next SWS, we must
define precisely what should be represented in a SWS,
and how ¢ transforms one SWS and a decision into
another. Figures 1 and 2 provide an example of the
difference between a predicate-based planner state and
an abstracted SWS for the PDD.

A given SWS should contain any information rele-
vant to making the next sequential decision d;. Ideally,
it should reflect the agent’s expectations of important
factors of future events. Each of the four state vari-
ables which together constitute an SWS for the PDD is
described below.

S:Stage The stage number is incremented by one.

79

J:Jobs Jobs which have just been completed in the
current time slice must be subtracted. At most one
job can be added in this time slice. No jobs may be
added if all resources are being used or if no unat-
tended jobs exist.

L:Load The load is decreased by the number of current
jobs in each time slice. The load is increased by the
duration of a newly scheduled job.

D:Down The number of down machines is increased
by one if a random printer fails and the diagnostic
NA (no action) is chosen. It is decreased when a
diagnostic is scheduled for a pending (down) job.

The Cost Function: Defining C

The general form of the incremental cost function Cyorai
describing the expected cost for making decision D in
state S; is simply:

CtotaI(Si, D) = Cost(S;, .D) - Gain(S;, D) (2)
i+6(D)
Cost(S;, D)= Y p(k) (3)
k=i
Gain(S;, D) = 7 (d) - (P(D)(n —i— (D)) (4)
where
it = the current stage.
n = the number of stages.
S; = the current state.
D = the current decision.
6(D) = the duration of the decision D.
p(k) = the cost multiplier for stage k.
t(d) = the importance coefficient for d down machines.
¥ = the gain-to-cost ratio constant.
P(D) the probability that decision D will work.

Results

The method we have described has been fully imple-
mented and applied to several domains, including the
PDD. Although space considerations preclude inclusion
of experimental results and complexity analyses here,
representative examples of simulations of the diagnos-
tic scheduler operating in the PDD can be found in
[Krebsbach, 1993]. Reliabilities of the four diagnostic
tests are varied, as is the probability of printer failure at
each point. Finally, a demonstration and discussion of
the time complexity advantage gained with this method
is presented.

Conclusion

We have shown that a methodology developed origi-
nally to select sensors offline for a planning and ex-
ecuting agent is also appropriate for agents which
must choose among sensing alternatives in an adaptive,
context-dependent manner at execution time. The chief
idea behind this dynamic method is that optimal deci-
sions are cached offline with abstractions of actual world
states encountered acting as indexes into this structure
during execution. Since the optimal decisions are com-
puted and cached using stochastic dynamic program-
ming, this method can be shown to be polynomial in
both space and time.

References

[Abramson, 1991] Bruce Abramson. An analysis of
error recovery and sensory integration for dynamic
planners. In Proceedings of the Ninth National
Conference on Artificial Intelligence, pages 744-749,
1991.

[Bellman, 1957] Richard Bellman. Dynamic Program-
ming. Princeton University Press, Princeton, NJ,
1957.

[Boddy, 1991a] Mark Boddy. Anytime problem solv-
ing using dynamic programming. In Proceedings of
AAAIL-91, Boston, MA, 1991.

[Boddy, 1991b] Mark Boddy. Solving time-dependent
problems: A decision-theoretic approach to planning
in dynamic environments. Tech Report CS-91-06,
Brown University, Department of Computer Science,
1991.

[Chrisman and Simmons, 1991] Lonnie Chrisman and
Reid Simmons. Sensible planning: Focusing percep-
tual attention. In Proceedings of AAAI-91, Los An-
geles, CA, 1991.

(Goodwin and Simmons, 1992 Richard Goodwin and
Reid Simmons. Rational handling of multiple goals
for mobile robots. In Proceedings of the First Inter-

national Conference on AI Planning Systems, pages
70-77, College Park, Maryland, June 1992.

[Hager and Mintz, 1991] G. Hager and M. Mintz. Com-
putational methods for task-directed sensor data fu-
sion and sensor planning. International Journal of
Robotics Research, 10:285-313, 1991.

[Hillier and Lieberman, 1980) Frederick S. Hillier and
Gerald J. Lieberman. Introduction to Operations Re-
search. Holden-Day, Inc., San Francisco, CA, 3rd
edition, 1980.

[Krebsbach et al., 1992] Kurt Krebsbach,
Duane Olawsky, and Maria Gini. Sensing and de-
ferral in planning: Empirical results. In Proceedings
of the First International Conference on AI Planning
Systems, College Park, Maryland, June 1992.

[Krebsbach, 1993] Kurt Krebsbach. Rational sensing
for an AI planner: A cost-based approach. Ph.D.
dissertation, University of Minnesota, 1993.

[Olawsky et al., 1993] Duane Olawsky, Kurt Krebs-
bach, and Maria Gini. An analysis of sensor-based
task planning. Technical Report TR 93-43, Univer-
sity of Minnesota Department of Computer Science,
Minneapolis, MN, 1993.

[Ross, 1983] Sheldon Ross. Introduction to Stochastic
Dynamic Programming. Academic Press, New York,
NY, 1983.

80

