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Introduction

The study described in this report constitutes part of
an ongoing research project in the area of task plan-
ning under uncertainty. Traditional approaches to task
planning assume that the planner has access to all of
the world information needed to develop a complete,
correct plan which can then be executed in its entirety
by an agent. Of course, for most complex domains,
having all of the necessary world information at plan
time cannot be assumed. We have implemented a plan-
ner, bump, which is capable of interleaving planning
and execution. bump is able to defer portions of the
planning process which depend on unknown or uncer-
tain information until the information in question can
be obtained through sensors. In this case, bump inserts
sensor operations directly into the plan which the agent
executes to enable further planning.

Alternately, bump may choose to assume a default
value for the uncertain information rather than plan
to sense it. We call this distinction the defer/default
question, and it has played a central role in guiding our
recent research efforts.

Deferral and defaulting each have strengths and
weaknesses. Deferral can be attractive with good sen-
sors because it reduces planner uncertainty, however,
sensing can become prohibitively expensive. In addi-
tion, satisfying preconditions for sensor operations can
in itself be time-consuming, and as we will see, increases
the probability of performing premature actions.

Defaulting can be risky, but it allows the planner to
complete more of the plan before execution begins. This
allows the planner to see further into the plan and de-
tect problems which may lie beyond the horizon of the
deferral point. As domain uncertainty increases how-
ever, further planning becomes increasingly arbitrary.

In general, it is difficult to know whether to defer and
sense a given uncertain value or simply choose a default

value and face the risks. Deciding on the best strategy
for a given planning problem consists of computing the
tradeoffs of various strategies, but as we will see, such
a computation quickly becomes intractable for even a
modest degree of uncertainty, suggesting the need for
heuristic techniques.

Purpose of Study

The experiments described here were designed to an-
swer general questions about factors that influence the
plan quality, and how to use those factors when deciding
on planning strategies. In this section we discuss three
types of planning strategies and three measures of plan
quality. It is useful to think of the quality measures as
functions to minimize or maximize, and the strategies
as means to that end.

Planning Factors

We have identified the following as important factors
of task planning with sensors. Our studies have shown
that by intelligently controlling these factors, a planner
can improve its performance, often dramatically. Thus,
we define an overall planning strategy as a set of algo-
rithms to determine each of the following parameters
for a given problem instance.

Goal ordering: We found it advantageous to carefully
order the planner’s initial goals based on the amount
and type of unknown information at the start of plan-
ning. Thus, we varied and examined goal orders to
determine heuristics for a goal ordering strategy.

When to sense: A critical decision when interleaving
planning and execution is when to switch from one
to the other. In related research, [Olawsky and Gini,
1990] identified two general strategies to manage the
transfer of control between the planning and execu-
tion modules (i.e., control strategies). In each strat-



egy, if the planner discovers that it requires unknown
information it inserts a sensor operation into the plan
to obtain the information. It then plans to satisfy any
preconditions of this sensor operation.

In the first strategy, known as Stop and Execute (SE),
when the planner encounters a goal whose achieve-
ment depends on information it has planned to sense,
control is transferred to the execution module. The
sensor process and all processes ordered before it in
the current partial plan are executed. Control then
returns to the planner.

In the second strategy, Continue Elsewhere (CE),
goals whose achievement depends on information to
be sensed are deferred. Planning continues elsewhere.
Only when all goals are either planned to comple-
tion or deferred does execution initially commence.
Execution halts after each sensor operation to allow
completion of a deferred goal. In general, CE allows
much more planning, albeit less informed planning,
to occur ahead of the first execution phase.

We believe these two strategies to be of particular in-
terest because they seem to be the only truly domain

independent control strategies which we have found
useful. Any other strategies we have considered are
not general-purpose, and are only useful under rather
specific circumstances.

What to sense: Finally, there is the question of which

uncertain quantities to sense and which to default.
We will refer to this as the deferral strategy. Choosing
a reasonable deferral strategy requires careful consid-
eration of domain-specific factors such as default reli-
abilities, sensor reliabilities, planning costs, execution
costs, and the cost of human intervention.

Plan Quality Criteria

Before discussing the strategies above, we must be clear
as to the objectives they are intended to serve. We
call these objectives plan quality criteria, and we have
identified and gathered data on a number of them, each
of which could stand alone, or be used in conjunction
with other criteria as a measure of plan quality.

Success Rates: For this measure of planner perfor-
mance, we computed the percentage of problems in
which bump was able to construct plans in which no
processes needed to be undone as a result of being
executed prematurely. One of the major difficulties
in interleaving planning and execution is to keep the
robot from performing actions which may interfere
with goals not yet considered. The most common ex-
ample of this in our experiments occurred when the
robot bolted closed a tool box only to discover that

it contained a wrench (or bolt) needed to accomplish
a later goal. Under this criterion we considered such
plans failures, in effect assuming the agent was un-
able to recover from such premature action.

Execution Cost: For this criterion we measured the
cost of all actions to be performed in the final plan
when the planner is allowed to recover from prema-
ture action (i.e. undo and redo these actions). This
provided us with some indication of how inefficient
the inferior solutions were to previously unsuccessful
problems. For these experiments, we simply counted
each instantiated process (action) in the plan as hav-
ing unit cost, although it would be trivial to assign
varying costs to various types of actions.

Planning Cost: Finally, in some experiments we
tracked the amount of planning work done by the
planner. Since bump is an agenda-based planner, a
reasonably accurate indication of planning work is
the number of items it placed on its agenda.

Experiments in the Tool Box World

Each experiment consisted of running bump on a care-
fully controlled set of problems. We selected the most
challenging subset of problems and measured bump’s
performance in solving each of them.

All of the experiments consisted of problems in the
tool box world. In this world, the robot is in a room
with n tool boxes, each containing wrenches and bolts
of various sizes. The robot knows the initial locations of
the wrenches and bolts. Bolts are identified by a unique
name, and wrenches are identified by size. The robot
has been instructed to close and bolt one or more tool
boxes with particular bolts. To perform each bolting
operation, the robot must use a wrench of a size that
matches the bolt. A sensor is available that can classify
bolts by their size (e.g., a number from 1 to 10). For
simplicity, the bolt sizes are indicated along the same
scale as the wrench sizes. We also assume the robot has
a tool belt into which it can put an unlimited number
of bolts and wrenches.1

The test set for our experiments varied slightly from
one experiment to the next, but there are a number of
characteristics shared by most of them. More detailed
descriptions of the experiments can be found in [Krebs-
bach et al., 1991]. The majority of the studies deal with
a three-box world. These boxes are called s, t, and u,
and they are to be bolted with bolts bs, bt and bu, re-
spectively. Each of these three bolts has a different

1We are not concerned here with the arm-empty condi-
tions as used in typical definitions of the blocks world. Our
main goal in defining this domain is to study how sensor use
can be interleaved with planning.



Control Goal Num of
Exp Boxes Quality Strategy Orders Unknowns
1 3 success SE all all
2 3 success CE all all
3 3 e-cost SE all all
4 3 e-cost CE all all
5 3 p-cost SE all all
6 3 p-cost CE all all
7 4 e-cost SE 4 1
8 4 p-cost SE 4 1
9 4 e-cost SE 4 2
10 4 p-cost SE 4 2

Table 1: Summary of experiments for success rates, ex-
ecution cost, and planning cost criteria.

size—bs has size 4, bt size 5, and bu size 6. The bolts
are initially in their respective boxes (e.g., bs is in box
s).2 All of the tool boxes are initially open. In all of the
experiments described in this paper the robot begins at
a neutral site (one unrelated to any work that it must
do). Since the planner’s goals are strongly associated
with particular tool boxes, this assumption was meant
to avoid any bias in our results.

Each experiment consists of hundreds or thousands of
planner runs using systematically defined sets of initial
conditions, goal orderings and planning strategies. The
variables defining these test sets are the following:

Wrench Location: Each of the wrenches may ini-
tially be in any tool box. For three box experiments
this implies 27 possible wrench placement scenarios.

Goal Ordering: We studied the effect of reordering
the initial goals on the performance of the planner.
For three box experiments, this involves 6 possible
orderings.

Control Strategy: SE versus CE.

Defer/Default Decisions: The size of each bolt is ei-
ther known or unknown at the start of the first plan-
ning phase. For three bolts there are 8 combinations.

Table 1 provides a short summary of the ten experi-
ments conducted. Complete experimental data can be
found in [Krebsbach et al., 1991].

Major Results

In this section we will outline the major results of the
experiments, and principles and heuristics we developed
based on the results. The results of experiments 1 and
3 are provided in Tables 2 and 3 respectively. In each

2This causes the robot to see less of the world while solv-
ing its early goals since it need not go anywhere to get a bolt.
In effect, this tests the planner on the hardest problems, i.e.,
those most likely to involve premature action.

456 45- 4-6 -56 4- - -5- - -6 - - -
STU 100 63 63 100 37 63 63 37
TSU 100 63 100 63 63 37 63 37
TUS 100 63 100 63 63 37 63 37
SUT 100 63 63 100 37 63 63 37
UST 100 100 63 63 63 63 37 37
UTS 100 100 63 63 63 63 37 37
Avg 100 75 75 75 54 54 54 37

Table 2: Experiment 1 (3 box, Stop and Execute, suc-
cess based)

456 45- 4-6 -56 4- - -5- - -6 - - -
STU 20.5 24.5 24.8 22.1 29.1 26.1 26.4 30.8
TSU 20.5 24.5 22.1 24.8 26.1 29.1 26.4 30.8
TUS 20.5 24.8 22.1 24.5 26.4 29.1 26.1 30.8
SUT 20.5 24.8 24.5 22.1 29.1 26.4 26.1 30.8
UST 20.5 22.1 24.5 24.8 26.1 26.4 29.1 30.8
UTS 20.5 22.1 24.8 24.5 26.4 26.1 29.1 30.8
Avg 20.5 23.8 23.8 23.8 27.2 27.2 27.2 30.8

Table 3: Experiment 3 (3 box, Stop and Execute, exe-
cution cost based)

table, the headings along the horizontal axis indicate
which of the three bolt sizes are known in the order bs,
bt, and bu respectively. So, for instance, 4-6 indicates
that bolt bs is of size 4, bolt bt is of unknown size,
and bolt bu is of size 6. Vertical lines separate columns
into groups with the same number of unknowns. The
labels along the vertical axis denote goal orderings. For
example, and ordering of TSU means the initial goal
involving box T was attempted first, followed in turn
by the S and U goals.

One immediate observation from Tables 2 and 3 is
that more unknown information means decreased suc-
cess and increased cost. Certainly the planner will be
more likely to perform premature actions with less a pri-
ori information. This general trend continued through-
out all of the experiments.

Choosing a Goal Ordering

One of the major results of this study was that
most sensing should come as early as possible in the
plan. The disadvantage of potentially premature action
caused by early sensing was, in most cases, outweighed
by the advantage of constructing most of the plan with
more information.

Ordering Unknown Goals Early Consider Ta-
ble 2, in particular, experiments STU 45- and STU - -6.
In the former, there is only one unknown, bu. In the
latter, there are two, bs and bt, however bump performs
at the same 63% level for both. Also, average success
rates in columns with the same number of unknowns are



identical, however, the percentages in each column are
distributed differently by goal ordering. For instance,
in each column with one unknown there are two goal
orderings which produce 100% success, and four which
produce only 63% success, but the goal orderings are
different in each column. Both of these behaviors are
the result of a single underlying principle.

To understand this behavior, we consider an example
more closely. Note that 100% success can be achieved
in column 45- (of Table 2) by ordering the U-goal first
(either as UST or UTS). We hypothesized that in cases
where the size of bu was unknown, it was crucial to
bump’s success to know the size of bu early in the plan-
ning process. This could be accomplished by reordering
goals so that the U-goal was attacked first. If this was
not done, the goal involving bu would be one of the
last two bump would try to accomplish. Therefore, it
would not sense the size of bu until later, increasing the
chances that achieving it would involve undoing some
actions which had already been executed. Since plan-
ning and execution are interleaved, some execution is
very likely to have been performed by the time bump

encounters its later goals. If any of the executed actions
involve bolting closed a box containing a needed wrench
for bu, the plan will no longer be successful.3 Experi-
ment 1 confirmed our suspicions that it is possible to
improve average performance by controlling the goal or-
dering based on which information is missing for a given
problem. In particular, goals involving unknown infor-
mation should be considered first.4 The same general
principle applied to Continue Elsewhere.

Ordering to Minimize Cost Similar observations
on goal ordering can be made when cost is the quality
criterion. From Table 3 we can see that the highest cost
occurs when a known goal is considered first. However,
looking at the -5- column, cost is minimized when there
is an unknown first and an unknown last.5

To better understand this behavior we conducted ex-

3In general, more specialized strategies are probably nec-
essary to avoid such problems. We have performed some
experiments using a strategy called Sense Before Closing,
in which all sensor processes are ordered before all closing
operations. This solves the problem, but often introduces
severe costs of its own. In the worst case, each tool box
would have to be visited twice instead of once, so Sense Be-
fore Closing trades bolting/unbolting operation costs with
transportation costs. Whether this is a good trade of course
depends on the domain.

4This goal ordering heuristic depends critically on the as-
sumption that the planner can identify connections between
its top-level goals and the unknown domain propositions in
the problem. In these experiments there is a one-to-one cor-
respondence between goals and potential unknowns, so the
issue is not addressed.

5This ordering tied for best in the success-based case.

periments 7 through 10 using 4 boxes (SE control strat-
egy only). Complete results of these experiments are
described in [Krebsbach et al., 1991]. These results are
summarized by the following heuristic:

Cost-Based Ordering Heuristic: When there are
goals whose achievement depends only on known
information, and other goals which depend on un-
knowns:

1. place one unknown in the first position,

2. place one in the final position (if possible),

3. place any other unknowns following the first one,

4. place all knowns in the remaining positions.

Choosing a Control Strategy

We found the CE strategy to be more susceptible to
small increases in uncertainty, performing better than
SE with one unknown, usually worse with two, and
markedly worse with three. CE’s sensitivity to un-
known information makes sense when one considers
CE’s main advantage and disadvantage. Its advantage
is that it performs more planning prior to the first exe-
cution cycle. This reduces the risk of performing prema-
ture actions if there are few unknowns, because bump

can see further into the plan and perform action re-
ordering to avoid conflicts it wouldn’t detect with SE
until it’s too late. However, as uncertainty increases
this further planning becomes less informed, and or-
dering decisions become more arbitrary, increasing the
probability of performing premature actions which lead
to failure or severe cost penalties. For instance, in the
case of 3 unknowns, bump using CE was able to find
successful plans in only 22% of the 3 box problems, as
compared with 37% for SE.

A Success-Based Overall Strategy

Let us now make a first attempt at our goal of finding
a good overall planning strategy. In addition to the
ordering heuristic we must have a method for selecting
a control strategy and a deferral strategy. We will try
to maximize success through our selection of a strategy.
We will assume here that once a control strategy and a
deferral strategy have been selected, the top-level goals
are reordered to obtain the highest success rate for the
given number of unknowns.

As we have shown, we can always improve success
rates by having additional known information. Thus,
if our default information were 100% reliable, it would
always make sense to use it and obtain a 100% success
rating (with either control strategy). Of course, default
information is rarely, if ever, 100% reliable. If incorrect
default information is used, the robot will most likely



encounter an execution time error. This will necessi-
tate some sort of execution time error recovery, and the
resulting execution will certainly be inefficient. We con-
sider this a failure. So, the increased success with extra
“known” information must be adjusted by the reliabil-
ity of that information. A similar point can be made
regarding sensor reliability. The data in all of our ex-
periments assume that all sensor readings are correct,
and this is clearly fictional.

Analysis

To make this discussion more concrete, let us analyze
the expected success rates given the reliability of our
default values and our sensors. Let r1, r2 and r3 be the
reliabilities of our three defaults, d1, d2 and d3 and let
s1, s2 and s3 be the reliabilities of the associated sensor
readings. Also, assume r1 ≥ r2 ≥ r3. (d1, d2, and d3 are
in no particular order relative to the planning process.)
When a bolt size is known at the start of planning,
this corresponds to a default reliability of 100%. Let
q0, q1, q2 and q3 be the maximum potential success rates
for cases with 0, 1, 2 and 3 unknowns respectively. From
our experiments, these values are 1.0, 1.0, 0.67 (with
CE), and 0.37 (with SE).

We can now calculate the expected success rate tak-
ing into account the default and sensor reliabilities. For
example, the success rate when taking default d1 and
sensing the other unknowns is r1s2s3q2. The best over-
all strategy in any particular instance of the three box
problem can be found by computing the maximum of
the following set of values:

{r1r2r3q0, r1r2s3q1, r1s2r3q1, s1r2r3q1,

r1s2s3q2, s1r2s3q2, s1s2r3q2, s1s2s3q3}

Once the maximum is found, the associated deferral
strategy consists of the default/defer decisions indi-
cated.

It is interesting to examine the default reliabilities
required in the three box domain. For simplicity, as-
sume that all sensor readings have the same reliabil-
ity σ. Table 4 shows for various values of σ how reli-
able the defaults must be to make them worth taking.
Looking at the column labeled σ = 1.0, we note that
if the best default has reliability ≥ 0.55 it is better to
take that default than to use a 100% reliable sensor. If
r1 ≥ r2 ≥ 0.67, it is better to take two defaults. For
more realistic values of σ, we see that the defaults need
not be very reliable at all. This is due to the reduction
in premature actions that can be avoided by having
more knowledge early in the planning process.

Take σ = 1.0 σ = 0.8 σ = 0.6

d1 r1 ≥ 0.55 r1 ≥ 0.44 r1 ≥ .33

d1, d2 r2 ≥ 0.67 r2 ≥ 0.54 r2 ≥ .40

d1, d2, d3 — r3 ≥ 0.80 r3 ≥ .60

Table 4: Success-Based Strategies.

A Cost-Based Overall Strategy

When the robot is able to detect at some point that
a default value or a sensor reading was erroneous and
then take corrective actions, it makes more sense to use
cost as the quality criterion. As described earlier, cost
can be measured either in terms of execution cost or
planning effort. We will focus on execution cost since we
believe this is generally the more significant aspect. A
similar analysis could be developed for planning effort.

Analysis

The analysis in this case is a good deal more compli-
cated since many more options come into play. For
example, if a decision is made to try a default which
later turns out incorrect, the robot could then try to
recover by using a sensor. If the sensor reading also
turns out to be incorrect, it might still be possible to
recover with human intervention (presumably at a very
high cost).6

As before, let ri be the reliability of a default value
and si the reliability of the sensor reading. In place
of the success rates qi used in our previous analysis,
we need the costs under various scenarios. We define
the function Ci to return these costs when there are i

unknowns. Ci takes i arguments. Each argument is a
sequence of one, two or three of the letters D, S and
I. This sequence reflects which of the resources — de-
fault, sense and intervene — were used for the given
unknown and the order in which they were tried. To
ensure a cost can always be calculated, it is assumed
that the last resource is successful and that interven-
tion is always successful. For example, DS means an
incorrect default followed by a correct sensor operation.
SDI means an incorrect sensor reading followed by an
incorrect default value followed by successful human in-
tervention. C1(SDI) would be the cost associated with
this scenario.

6Some other options that we do not consider in this anal-
ysis are (1) to try a different sensor, and (2) to continue
trying the same sensor. If the sensor is working at all (i.e.,
there is a non-zero probability of a correct reading), then
with persistence the second option should eventually pro-
duce a correct reading. This might also have a very high
cost.



Given this information we can develop formulas for
the expected costs of various attempted solutions. For
example, with one unknown the expected cost of de-
faulting with sensing and intervention as backup actions
would be

r1C1(D)+ (1− r1)s1C1(DS)+ (1− r1)(1− s1)C1(DSI)

An alternative strategy would try sensing first followed
by defaulting and then intervention.

s1C1(S)+ (1− s1)r1C1(SD)+ (1− s1)(1− r1)C1(SDI)

Three remaining strategies are

no default: s1C1(S) + (1 − s1)C1(SI)

no sensing: r1C1(D) + (1 − r1)C1(DI)

surrender: C1(I)

One of these last three options might be appropriate if
sensing or defaulting is particularly unreliable and the
cost of intervention is light. Given the C1 cost esti-
mates and the reliabilities we could calculate the op-
timal strategy for one unknown by evaluating the five
above formulas and finding the minimum.

A similar set of cost formulas can be developed for
any number of unknowns (see [Krebsbach et al., 1991]),
but the complexity of the formulas make them imprac-
tical. Calculating the expected cost of just one scenario
that considers all three resources — default, sense and
intervene — takes time O(n3n) (with n unknowns).
Even the amount of cost data that must be collected
grows exponentially in the number of unknowns. Many
such scenarios must be evaluated and compared to find
the optimal strategy of sensing and defaulting. Clearly,
we cannot effectively calculate this optimal strategy un-
less the number of unknowns is quite small. Rather, we
need heuristic techniques that will help us find an ap-
proximately optimal strategy. This will be a goal of our
future research.

Discussion

Interleaving of planning and execution has been used
and discussed extensively in robotics [McDermott,
1978, Durfee and Lesser, 1986, Chapman, 1991] but few
have addressed the more specific problem of deciding
what to sense and when. Our work has been inspired,
among others, by the work of Turney and Segre [1989],
who alternate between improvising and planning. Since
sensing is assumed to be expensive, the system prefers
actions with the fewest sensor requests first. The results
they obtained show the importance of good heuristics
over sophisticated planning strategies.

Brooks [1982] verifies the feasibility of a plan in light
of uncertainties and errors and decides when sensors
are needed to reduce the amount of error. Doyle et al.
[1986] use sensors to verify the execution of a plan. The
sensor requests are generated after the plan has been
produced by examining the preconditions and postcon-
ditions of each action in the plan. Domain dependent
verification operators map assertions to perception re-
quests and expectations. The entire process is done be-
fore executing the plan. Hager and Mintz [1991] have
more recently proposed methods for sensor planning
based on probabilistic models of uncertainty.

The need to plan with incomplete information raises
important theoretical issues. A number of authors have
proposed decision theoretic approaches to planning and
control. Horvitz et al. [1989] propose a general model
for reasoning under scarce resources that is based on de-
cision theory. Boddy [1991] has studied time-dependent
problems and proposed a framework based on decision
models for constructing solutions to time-dependent
problems. Chrisman and Simmons [1991] produce near
optimal cost plans by using Markov Decision Processes
to decide what to sense. Hsu [1990] proposes to plan
with incomplete information by generating a “most gen-
eral partial plan” without committing to any choice of
actions not logically imposed by the information avail-
able at that point. An anytime algorithm [Dean and
Boddy, 1988] is used to choose the appropriate action
on the current partial plan when the system has to act.
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