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Abstract

In many planning domains, it is impossible to construct plans
that are guaranteed to keep the system completely safe. A
common approach is to build probabilistic plans that are guar-
anteed to maintain system with a sufficiently high probabil-
ity. For many such domains, bounds on system safety can-
not be computed analytically, but instead rely on execution
sampling coupled with a plan verification techniques. While
probabilistic planning with verification can work well, it is
not adequate in situations in which some modes of failure are
very rare, simply because too many execution traces must be
sampled (e.g.,1012) to ensure that the rare events of interest
will occur even once.
The P-CIRCA planner seeks to solve planning problems
while probabilistically guaranteeing safety. Our domains fre-
quently involve verifying that the probability of failure is be-
low a low threshold (< 0.01). Because the events we sam-
ple have such low probabilities, we useImportance sam-
pling (IS) (Hammersley and Handscomb 1964; Clarke and
Zuliani 2011) to reduce the number of samples required.
However, since we deal with an abstracted model, we cannot
bias all paths individually. This prevents IS from achieving
a correct bias. To compensate for this drawback we present
a concept ofDAGificationto partially expand our representa-
tion and achieve a better bias.

Introduction
Our approach (Younes and Musliner 2002; Younes,
Musliner, and Simmons 2003) instead relies on an execution
sampling-based verifier as the validation procedure used to
establish whether the degree of trust specified by the human
for a particular generated plan is sufficient, or whether fur-
ther planning is required to probabilistically guarantee the
desired threshold. While this approach to probabilistic plan-
ning with empirical verification works well in many com-
plex domains, it is inadequate for domains with extremely
rare events because too many execution traces must be sam-
pled (e.g.,1012) to ensure that the rare events of interest will
be sampled at all.

Importance sampling is a statistical technique that relies
on artificially biasing probability distributions of selected
random variables prior to sampling, and then correspond-
ingly unbiasing the results afterward. Due to its ability to
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increase the prevalence of rare events in the sample space,
IS suggests a promising method for significantly reducing
the number of samples needed to guarantee a desired safety
level for a verification-based planner operating in these types
of domains. We briefly describe how we use IS techniques
with the probabilistic planner built into P-CIRCA (Younes,
Musliner, and Simmons 2003), and describe the particular
challenge of choosing good initial biases for appropriate ran-
dom variables in the planner’s state space. Finally, we de-
scribe a graph transformation algorithm that improves the
setting of the initial IS biases, and analytically characterize
the computational tradeoff between further graph transfor-
mation and the reduction in required verifier traces.

P-CIRCA
CIRCA is an architecture for real-time intelligent control.
The original planner in CIRCA (Musliner, Durfee, and Shin
1993) builds reactive control plans that achieve system goals
and maintain system safety subject to strict time bounds and
models of the dynamic external environment. While the
original CIRCA model includes nondeterminism in the out-
come of actions and uncertainty about the timing and occur-
rence of externally-caused transitions, it does not havequan-
tified uncertainty information. The extended model, called
P-CIRCA, includes quantified uncertainty in the form of
probability distributions on both the timing of different tran-
sitions and the outcomes themselves. This allows CIRCA
to build plans that are not completely guaranteed to prevent
failure; rather, plans may allow for the possibility of fail-
ure as long as the failure probability is below some specified
threshold.

The Planner
The flowchart on the left of Figure 1 demonstrates how the
planner and verifier interact. As shown, the planner ac-
cepts as input a model of transitions between states that
includes both probability distributions over nondeterminis-
tic outcomes, and timing information. Given this model,
the planner generates a plan to achieve the given objectives
while preserving safety in a dynamic real-time environment.
Because P-CIRCA plans actions to preempt transitions that
lead to failure, theplan is a directed, possiblycyclicgraph of
the states reachable from the initial state given the transitions
possible from each state, but not including states that have



Figure 1: P-CIRCA planning and verification both without
(left) and with (right) importance sampling.

been made unreachable by planned preemptive actions. As
noted, cycles are common in the graph for a variety of rea-
sons: the world can undo things we want to achieve; actions
can probabilistically fail to achieve postconditions and cause
a self-loop. In such cases, the agent can essential remain or
return to the “same state” but with some time having run off
of the state’s “dwell time” clock. It is for this reason that
the world model of the probabilistic extension corresponds
to a generalized semi-Markov process (i.e., the dwell time in
a state can influence which transitions are possible out of a
state). In this paper we will introduce technique for reducing
the impact of these cycles on the verification step, a process
we call DAGification. We will see shortly how eliminat-
ing at least some of these same states with different clocks
through DAGification results in a better graph in which to
employ importance sampling techniques.

The Verifier

In earlier work, Younes and Musliner (2002) presented a
procedure for probabilistic plan verification to ensure that
heuristically-generated plans achieve the desired level of
safety. With this approach, we attempt to minimize verifi-
cation effort while guaranteeing that at most a specified pro-
portion of good plans are rejected and bad plans accepted.
As shown on the left of Figure 1, the Monte Carlo simu-
lator generates a set of random variables which constitute
the dynamics of the environment for a single execution path.
The plan is then executed in this environment to determine
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Figure 2: The original model.
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Figure 3: The original model with paths expanded out to
lengthk.

a single success or failure outcome. Given enough sample
paths, the verifier can guarantee that at most a specified pro-
portion of good plans are rejected and bad plans accepted.
Without importance sampling, the sequential probability ra-
tio test (SPRT) (Wald 1945) is used after each simulation
to determine whether enough samples have been run to halt
simulation and return an overall result. This result will beto
accept the plan if the simulations have determined that the
probability of failure of the plan is less than the specified
safety threshold (pfail < θ).

Importance Sampling
Statistical verification techniques work much more effi-
ciently when sampling events with high probabilities. Im-
portance sampling was developed to take a domain with very
low-probability events and bias the probabilities of those
events so that the low probability events can be sampled at
a high probability. Through principled unbiasing of the re-
sults obtained during simulation, it is possible to derive the
desired probabilities of hypothesis relevant to the original
model. The biasing works by selecting some set of the prob-
abilistic transitions in a model and assigning them new prob-
abilities. (Note that the size of this selected set of transitions
is critical to leveraging importance sampling to significantly
reduce the number of samples, as we will discuss shortly.)
Then when a sample is drawn we compute the ratio of the
true probability of the tracef(X) over the biased probability
f∗(X). We then take the mean of these ratios which gives
us an estimate of the probability of the event (Hammers-
ley and Handscomb 1964). Because we are sampling rare
events much more often, we often require far fewer samples
to prove or disprove the original hypothesis.

DAGification
As in most search problems, the state space is described
implicitly via action and event descriptions. In the course
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of planning appropriate actions, P-CIRCA will expand por-
tions of the reachable state space; however P-CIRCA will
not explicitly “DAGify” cycles for which it can adequately
plan without doing so. Such a situation is shown in Figure 2.
P-CIRCA will attempt to plan the best action it can from
stateS0 which may only probabilistically preempt the tran-
sition toSfail; however, the planner itself might not need to
expand states forward fromS0 to determine that best action.

Although planning might not always require it, DAGifica-
tion of cycles provides more transitions to individually bias,
and consequently provides more opportunities to improve
the initial biases upon which more efficient importance sam-
pling depends. If there is a cycle, we might be unable to ex-
press the optimal bias for IS and obtain a zero-variance es-
timator. This is not true for directed acyclic graphs (DAGs),
in which case we can always express a zero-variance esti-
mator. While it can sometimes be prohibitively expensive to
fully-DAGify the cycle, partial DAGification can, as we will
show, get us significantly closer to zero-variance.

Beginning with an implicit description of the state-space
model we seek to expand this model to enable greater control
of importance sampling. Ideally we would like to bias the
probabilities of individualtraces(as opposed to individual
transitions), which would theoretically allow us to achieve
an optimal bias, and obtain maximum benefit from impor-
tance sampling. We now describe a two-step approach that
makes this possible, at least out to lengthk, at which point
the computation may no longer be justified for the expected
benefit.

The first step of DAGification involves taking the state-
space model as shown in Figure 2 and expanding all paths
from the initial state out to lengthk, as shown in Figure 3.
We then introduce a new initial state,S0,t=0. Let Y equal
the set of all paths who either reach a sink state in less than
k steps, or any path of lengthk from S0,t=0. The process
works by taking eachy ∈ Y , and adding a single transition
from S0,t=0 to Send(Y ). Here we useSend(Y ) to denote the
state where pathy terminates. In the example we use, these

paths all end inSfail after a certain number of steps (i steps),
so we haveSend(Y ) = S0,t=i for i = 1..k, and one addi-
tional path that ends atS0,t≥k. The transition model from
this point remains the same and corresponds to the original,
unDAGified portion of the model, except with timing char-
acteristics ofS0,t≥k adjusted to account for the dwell time of
the states in the DAGified portion. We now analyze the re-
lationship between this extra DAGification computation and
the computation saved by requiring fewer samples due to
improved importance sampling.

DAGification vs. Sampling
We would like the expected decrease in samples to be
asymptotically greater than the work required by the DAGi-
fication process. Suppose our model – DAGified to depthk
– has an average branching factor ofb. Then DAGification is
simply a breadth first search to depthk, and thus will expand
bk nodes. In terms of memory, we must then create a new
model with a new state/transition pair for all fringe nodes of
the search. This leads to the observation that ideallyk is less
thanlogb of the expected decrease in the number of samples.

Analytical Results
We now describe two predictive functions for this sim-
ple domain that estimate the expected probability of fail-
ure. The functionMaxI gives us the largest length of
a path that will be sampled if we taken samples in the
given plan. To determine this number, we say that no path
whose probability is less thanx will be sampled. Φ is a
function that depends on the same variables asMaxI (i.e.
Φ(p∗, n, x),Φ(pl, pf , k, n, x)). This dependency is nota-
tionally suppressed below for brevity. Equation 2 describes
the expected failure rate for plain IS while Equation 3 de-
scribes the version with the additional DAGification step.
We compute the analytical probability of failure afterT time
steps in Equation 1.

pfail = 1− (1− p)T (1)

pIS =
1

Φ

(

1− (1− p)MaxI(p∗,n,x)
)

(2)

pDAG =
1

Φ

(

1− (1− p)MaxI(pl,pf ,k,n,x)
)

(3)

Given these probabilities, we now define functions to ex-
press the expected error. Each error is divided bypfail to
convert it to a percentage.

Err[pIS] =
pfail − pIS

pfail

(4)

Err[pDAG] =
pfail − pDAG

pfail

(5)

The graph in Figure 5 shows the corresponding error rates
for values of 0.1, 0.5, and 0.9 for each ofp∗ (plain IS) and
pf (DAGified IS). The number of samples,n, varies along
the x-axis from 50 to 500. We plot the error rate without
DAGification (Err[pIS], from Equation 4 – as shown in the
top three curves – against the error rate of IS with DAGifi-
cation (Err[pDAG], Equation 5). The biased probabilities of
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Figure 5: Expected error rates using importance sampling
both with and without DAGification

transition to failure (from the original model) are denotedp∗
for plain IS andpf for DAGified IS. In both cases, the values
x = .1, p = .0001, andT = 200 remain constant, whilep∗
andpf each take on the same three values as shown. The
additional parameters pertinent to IS with DAGification are
ploop = .5 (as shown in Figure 4), andk = 100 (the maxi-
mum depth of allowable graph expansions).

We note that IS with DAGification results in significantly
lower error rates in all three cases. Since (3) depends on
the sum of the probabilities of the paths expanded during
DAGification (1− ploop), the lower error rates are not guar-
anteed to hold for every such choice ofploop; however, we
expect that for cases of interest to us the advantage would
generally be gained. For instance, with the Cross-Entropy
method as described in (Rubinstein and Davidson 1999;
Clarke and Zuliani 2011), we would expect to produce a
good bias and therefore would see results similar to these,
even if depending on our initial bias the results would be
indeterminate. DAGification thus allows such a method to
achieve better results by allowing more control over the bi-
asing.

DAGs vs. Digraphs

In general, the problem is one of the structure of directed
acyclic graphs vs. generic directed graphs. So long as we
can apply the right bias to a given path, importance sam-
pling will produce the correct solution (with low variance).
However, in P-CIRCA we have restricted ourselves to bias-
ing actions rather than whole paths. This makes sense as we
have to restrict cost of defining the bias, and it allows us to
specify the perfect bias in many places.

Specifically, when specifying the bias over actions, we
can perfectly bias directed acyclic graphs, however we can-
not bias generic directed graphs. The proof follows this line
of reasoning. In a DAG, we have a system ofn equations
andn unknowns. Such a system must have at least one so-
lution, which shows that we can compute the optimal bias
for the given problem. When we have at least one cycle in
the problem, we get an infinitely large set of equation andn
unknowns, which is not solvable.

Let the following terms be defined.B∗(path) is the
optimal bias of a path.P (path) is the probability of a
path. paths refers to all paths in the DAG or digraph.
K∗(path) = P (path)

B∗(path) is the optimal computation of a sam-
ple.α multiplicative error in the bias.γ is the error induced
by breaking samples. Letai wherei ranges from 0 to the
length of the path be the ith action along a path.P (ai) is the
unbiased probability of that action, andB∗(ai) is the opti-
mal bias of that action. It should be clear that:

P (path) = Π
|path|
i=0 P (ai), (6)

B∗(path) = Π
|path|
i=0 B∗(ai), (7)

K∗(path) = Π
|path|
i=0

P (ai)

B∗(ai)
. (8)

Thus, if there exists an optimal per-action biasB∗(ai) for
all actionsai in the graph, then we can compute an optimal
bias for all paths in the graph. IfB∗ was known, we could
construct a system of equations and unknowns so that we
could attempt to solve for eachB∗(ai). In an acyclic graph,
there cannot be more paths than there are actions. Thus,
the system is under constrained and there exists one or more
solutions. However, as soon as a cycle exists, there are in-
finitely many equations, a fixed number of unknowns, and
there is no solution to the problem.

Optimal DAG Bias The DAG case covers two special
kinds of problems that we might want to use importance
sampling on. The first is, of course, directed acyclic graphs.
The second is any graph for which we care about events
within a finite horizon. So long as the problem has a fi-
nite horizon, we can compile any arbitrary graph down into
a DAG by unrolling all of the paths up to the length of the
horizon and rewriting that as a new DAG.

For ease of the proof, we assume that the graphs in ques-
tion has special structure. Namely, they have a single initial
state and a single sink state representing the event of interest.
Without loss of generality, any DAG can have this structure.
To do this we simply add a new initial state and create ac-
tions to each original initial state (with action probabilities
based on the probabilities of the initial states themselves),
and create an action from each state of interest to a single
new sink state (these will be deterministic).

Theorem. An optimal bias can be described when perform-
ing importance sampling on a DAG with probabilities and
biases ascribed to single edges in the DAG.

Lemma 1. Each path in a DAG has at least one edge which
only exists in that path.

Lemma 2. A DAG contains at most|E| unique paths
through it, whereE is the set of all edges in the DAG.

Lemma 3. DAGs of interest for importance sampling also
contain at least one path through them.

Proof. Let D be a DAG consisting of the vertexesV and
edgesE. We will say that the edges have probabilityai,
wherei represents the ith member ofE. The biases for im-
portance sampling will be described similarly, having bias



bi for the ith edge. We will find it useful to discuss the paths
through the DAG to the event of interest, and we will re-
fer to them asp being members ofP . Let K be the actual
probability of the event of interest.

The DAG represents multiple possible events in sequence,
some of which we are interested in. In fact, without loss
of generality we can remove all edges from the DAG which
cannot lead to an event of interest. As a result, the sum of the
weights on all edges in the DAG is equal to the probability
of the event in question:

Σp∈PΠaiinpai = K (9)

The optimal bias for the DAG can be computed as the
solution to a set of linear equations. In fact, eachp ∈ P
adds an equation to the system:

Πi∈p

ai

bi
= K (10)

wherei ∈ p represents the inclusion of edgei in the path
p. Essentially, the product of all probabilities divided by the
product of all biases must give the actual event probability
K. This is exactly the definition of the optimal bias.

Additionally, we must add the following constraints:

Σp∈PΠi∈pbi = 1 (11)

which simply says that in the biased DAG, all probability
mass leads to the event of interest, another requirement of
the optimal bias.

We have now described a system of|P | + 1 equations
and|E| unknowns (recall thatai is given by the DAG). By
lemma 1 we know that each path contains at least one unique
edge. Because the edges exist on a path, they are naturally
ordered. As a result of the ordering and their existence, there
must be a first unique edge along a path, which we will refer
to asup, and the collection of all such edges will be referred
to asU .

We can set the bias of ever edge not inU to be exactly the
weight of the edge:

∀bi∈E−Ubi = ai (12)

This reduces Equations 10 to just finding the bias for the
first unique edge in each path, as the rest of the product will
be equal to 1 by Equation 12. In fact, the bias associated
with each first unique can be computed as:

up

bp
= K (13)

1

bp
=

K

up

(14)

bp =
up

K
(15)

Such an assignment guarantees that any given trace
through the DAG will produce a ratio that is exactly the
probability of the event. Effectively, we have reduced our
system of|P | + 1 equations and|E| unknowns to a system
of |P | + 1 equations and|P | unknowns. A solution, should
one exist, gives us a zero variance estimator, satisfying the

requirements of the optimal bias. It remains to be shown that
this over-constrained system is solvable. We will show this
by showing that the constraint expressed in Equation 11 is
simply a linear combination of the Equations from 10:

Equation 10 be rewritten as:

∀p∈PΠbi∈pbi =
Πai∈pai

k
(16)

Starting with a linear combination of these|P | equations,
we will now derive Equation 11, thereby showing that this
equation is redundant and that the system is not over con-
strained:

Σp∈PΠbi∈pbi = Σp∈P

Πai∈pai

K
(17)

=
1

K
· Σp∈PΠai∈pai (18)

=
1

K
·K (19)

= 1 (20)

17 is a linear combination of equations. 18 follows sinceK
is not dependent onp. 19 comes from equation 9, and 20 is
algebra.

So for any given DAG from which we might sample rare
events, there exists a set of equations which, when solved,
will provide an optimal importance sampling bias to the
problem. This set of equations is not over constrained, so
it must contain a solution.

Current Work
We are currently working on several improvements to this
work. First, we are in the process of conducting experiments
using P-CIRCA directly to empirically verify the analytical
results reported here. Secondly, we are generalizing the re-
sults to state spaces with cycles of arbitrary length, while
simultaneously developing a heuristic graph expansion algo-
rithm for doing more intelligent expansion of those portions
of the state space. We are are also proving formal properties
of this heuristic DAGification algorithm to analytically de-
rive relationships between computation required for further
graph expansion, and a corresponding computation savings
in verification sampling.

Conclusion
We are interested in the issue of trust from the perspective of
a planning agent making probabilistic safety guarantees over
a finite time span when exogenous events can lead to fail-
ure. Due to complex timing interactions, a sampling-based
verifier is used to test the safety claims made; however, if
failure events are rare, the number of samples required to
verify a given hypothesis can be prohibitive. We describe an
approach based on importance sampling (IS) to greatly re-
duce the number of samples required, and describe a graph
expansion algorithm that improves the initial IS biases upon
which successful IS depends with relatively modest compu-
tation. Finally, we provide an analysis of the improvement



gained, and briefly describe current work to test this anal-
ysis empirically and to extend this work to more complex
probabilistic models.
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