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Abstract
Most approaches to map-making with an autonomous mo-
bile robot rely on a set of standard tools, such as laser range
finders, sonar arrays, precise shaft encoders, or GPS uplinks.
While it is difficult to construct a map without such tools,
there is still utility in endowing low-cost, legged robots with
map-making capabilities in order to exploit their unique ad-
vantages. This paper describes an attempt to construct a
recognizable map of an indoor hallway environment with a
Sony ERS-7AIBO outfitted with suboptimal mapping com-
ponents.

Introduction
Many map-making studies (Thrun, Burgard, & Fox 2000;
Stewartet al. 2003), have employed laser or sonar range
finders on a wheeled robot, but map-making with a robot
lacking these standard features has received relatively little
attention. The SonyAIBO is one such modern robot. The
AIBO is an excellent robot platform for undergraduate re-
search because of its low cost and robust feature set, but
the AIBO ’s sensors are less than ideal for the construction
of goodmaps; i.e., maps that mirror the physical features
of an environment to within an acceptable level of precision
and accuracy. A good map can also be used for navigating
and localizing within an environment.

While simply choosing a robot that is better suited to
mapping would eliminate many difficulties, there are still
good reasons to focus on mapping capability for subopti-
mally outfitted robots. For instance, because theAIBO is
used so widely at the undergraduate level, a good mapping
system for theAIBO would benefit a number of undergrad-
uate projects that could use it as a starting point for more
involved projects. TheAIBO mapping problem is also inter-
esting because of the challenge posed by legged locomotion.
Legs allow options for movement that wheels cannot easily
provide such as traversing rough terrain or climbing trees
(www.msl.ri.cmu.edu/projects/rise/) but legs also introduce
noisy and inaccurate odometry. Minimizing error in leg-
based odometry is an interesting subproblem that arises from
map-making with theAIBO, and is useful because legged
robots can perform important navigational tasks that cannot
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be performed by wheeled robots.
In this paper we describe an undergraduate student project

that attempts to construct a good map of an indoor envi-
ronment using only the standard features of a Sony ERS-7
AIBO. Specifically, we are programming theAIBO to au-
tonomously construct a map of an enclosed hallway area and
later use that map to navigate to specific points in the hall-
way. We are currently trying to accomplish this task with-
out giving the robot explicit knowledge of general hallway
structure such as corridors and junctions.

The AIBO Platform for Mapping

Gathering useful odometry and range data from the ERS-
7 sensors is a difficult and problematic task. Instead of
wheels, theAIBO has four legs – legs that introduce a host of
problems for determining odometry accurately. TheAIBO ’s
legs are quite prone to slippage, especially when rotating.
The legs complicate the measurement of rotational distance
when turning, and they make it difficult to maintain an accu-
rate position estimate for the robot.

Figure 1: The infrared view module displays data col-
lected from the most recent pan of the robot’s
head. Lines are drawn from the point at which
an obstacle is detected to the bounds of the sen-
sor range to better visualize the robot’s percep-
tion of its environment.

To gather range data, theAIBO must rely on two of its
three infrared sensors. Each of the infrared sensors is tuned
for a specific distance range. The short-range sensor detects



Figure 2: The robot sends sensor information to the lap-
top, and the laptop plans the robot’s actions.

obstacles from 50mm to 500mm and the long-range sen-
sor detects obstacles from 200mm to 1500mm. The chest
mounted infrared sensor is used to detect sudden drops such
as stairs. The short- and long-range sensors are located on
theAIBO ’s head and face directly forward. To acquire a 180-
degree view of the environment in front of the robot, it is
necessary to pan the head from side to side. This method of
gathering range data is much different from the use of fixed
sensors such as sonar, as it is impossible to acquire a broad
view of the environment at one specific time. By panning
the head, it is possible to create a snapshot view of the envi-
ronment represented as distances to obstacles, but each point
is viewed at a slightly different time since the head cannot
rotate instantly. If the robot is walking forward and panning
its head to acquire range data at the same time, the problem
only worsens. Figure 1 shows a graphical representation of
an infrared snapshot, as constructed by our program.

Mapping Framework
The mapping framework developed during this project is
composed of two subsystems, as depicted in Figure 2. One
subsystem runs on theAIBO itself, and the other operates
on a more powerful laptop. The two subsystems communi-
cate via a wireless network link. TheAIBO-based subsystem
is built in C++ with the help of the Tekkotsu development
framework forAIBO robots created at Carnegie Mellon Uni-
versity (Tira-Thompson 2004). The laptop-based subsystem
is written in Java for maximum portability.

The Tekkotsu-based code running on theAIBO is respon-
sible for controlling the robot’s limbs, recording the speed
of the robot, and collecting IR data by panning the head and
reading from the IR sensors. The slave program running
on the robot receives all higher level commands from the

program on the laptop. For instance, the robot itself does
not decide where to move. Instead, the robot sends sensor
information to the laptop which then plans the actions the
robot should take. Then, the laptop transmits instructionsto
the robot via the wireless network. The robot executes all
instructions it receives from the laptop, and the cycle con-
tinues.

Figure 3: The Tekkotsu state machine that drives the
robot’s constant head panning is quite simple. A
command from the laptop-based controller ac-
tivates the panning which will continue until a
STOP command is sent by the laptop.

Figure 4: Locomotion is driven by this Tekkotsu state ma-
chine. A command from the laptop-based con-
troller either sets the robot on a course specified
by a Tekkotsu waypoint or instructs the robot
to begin walking in a particular direction until a
STOP command is sent.

The Tekkotsu program is based on two state machines.
One state machine is responsible for controlling head move-
ment and the other is responsible for controlling locomo-
tion. Both state machines are embedded within a Tekkotsu



behaviorthat receives commands from the network link and
passes them on to the appropriate state machine. Boxes rep-
resent states, while arcs represent state transitions based on
sensor readings or commands sent over the network. Fig-
ures 3 and 4 illustrate the two state machines. The modular
nature of this setup makes the Tekkotsu portion of the frame-
work fluid and easily expandable. It is a simple matter to add
nodes to the state machines or even to add an entirely new
state machine to a behavior.

Figure 5: The occupancy grid module builds a map as the
robot wanders through the environment. Darker
squares indicate a greater likelihood that the
area is occupied by an obstacle or a wall.

The Java-based controller’s main function is to plan the
robot’s high-level actions. We designed the core of this pro-
gram to accommodate the easy addition and removal of fea-
tures. The unchanging role of the controller is to establish
a connection with the robot and to interpret sensor data that
is gathered from the robot. It is possible to add modules
that can access the sensor data from the robot and send com-
mands back to the robot. Currently, the Java controller has
three distinct modules: a view of the IR sensor data from one
sweep of the robot’s head (Figure 1), an occupancy grid-
based map (Figure 5), and a control module that uses in-
formation from the other two modules in order to steer the
robot down the hallway. This framework provides a useful
foundation for constructing a usable map in a hallway envi-
ronment.

Project Status
The current map-making process uses two important types
of information from theAIBO, namely the instantaneous ve-
locity of the robot and infrared range values. The robot’s
velocity is tracked by the Tekkotsu framework and is ac-
cessible in the Tekkotsu WorldState data structure. The in-
frared sensors are also easily accessible from Tekkotsu, but
it is necessary to pan the robots head continually to maintain

an up-to-date snapshot of the environment. As sensor data
reaches the laptop, it is fed to the occupancy grid module.

This occupancy grid is based on a model presented in
Robin Murphy’s text (Murphy 2000). Murphy’s sensor
model is specifically intended for a sonar array, so it was
necessary to eliminate sonar-specific assumptions to adapt
the model to work with the IR sensors. The IR model differs
from the sonar model because it is essentially a one dimen-
sional line instead of a cone-shaped field. Specifically, the
occupancy grid uses the idea that each grid unit has an as-
sociated value which indicates the likelihood of occupancy.
For each obstacle that is detected within a particular grid
unit, the occupancy value is incremented. Likewise, all of
the units that lie on a straight line between the robot and the
detected obstacle are assumed to be empty, and occupancy
values are decremented. The result of this process is shown
in Figure 5.

We are currently refining our occupancy grid-based map-
ping process. TheAIBO ’s infrared sensors are accurate
enough for our purposes in a hallway environment, but the
legged nature of the odometry has proved far too inaccu-
rate for a simple dead reckoning approach. At a minimum
it is necessary to fuse the data from the IR sensors with the
odometry data to verify the robot’s movements within the
environment by confirming the change in positions of ob-
served obstacles and walls.

A notable failed experiment involved fusing data from the
AIBO ’s video camera and infrared sensors in an effort to im-
prove the quality of our occupancy grid. Inspired loosely
by (Se, Lowe, & Little 2002), we attempted to use distinct
landmarks to nail down particular locations in the environ-
ment. The robot was responsible for discovering the land-
marks visually, with no initial landmark knowledge. Upon
sighting a landmark, the robot would determine the location
of the landmark using IR sensors and fix the location on the
map. Then, if the robot ever happened to see that particular
landmark again, it would compare the previously recorded
location of the landmark with the currently observed loca-
tion. A variety of different methods were tested to smooth
out the error on the occupancy grid after the same landmark
was observed in different locations, but no attempt proved
satisfactory. The main problems with the approach were
that the robot had difficulty distinguishing the unique land-
marks, and no suitable method was devised to fix the grid
upon discovery of a discrepancy between old and new land-
mark positions. Although we do not intend to revisit this
specific approach, we may revisit the idea of fusing sensor
data from the video camera, particularly if the infrared sen-
sors cannot provide enough data to accurately represent the
environment.

Related Work
Many combinations of platforms and environments for
robotic map-making have been investigated, and a great
number of general and situation-specific methods for cre-
ating and refining maps have been developed. Studies using
wheeled robots with laser or sonar range finders and proba-
bilistic approaches such as Bayes or Kalman filters have pro-
duced impressive results both in and outside of hallway en-



vironments (Foxet al. 2003). The SonyAIBO itself has been
used extensively at the undergraduate and graduate level for
many AI and robotics projects. The four-legged division of
the RoboCup soccer league might be the most well known
venue whereAIBO robots have been used for complicated
navigation and localization tasks (Velosoet al. 1998).

Past and Future Work
Lawrence University currently owns one ERS-7AIBO that
has been affectionately namedLARRY. LARRY provides stu-
dents interested in AI and robotics with a platform to build
projects and conduct experiments. TheAIBO was purchased
with a grant to support several students interested in learn-
ing more about robotics and extending their knowledge from
theArtificial Intelligenceclass at Lawrence. So far,LARRY
has been at the center of two large student projects. The first
project, entitledMulti-Robot Navigation and Coordination
(Dan Casner and Ben Willard), made use of twoAIBO robots
(one student owned and one owned by the university) that
communicated and coordinated their efforts to rendezvous
in a landmark-rich environment. The second project,Map-
Making with a Four-Legged Mobile Robot, is the subject of
this paper. This project is split into two phases. The first
phase occurred as summer research, and the second phase
takes the form of an Honors Project over the course of the
2006-2007 academic year. The summer was used for lit-
erature review, experimentation, and the construction of a
development framework for mapping. We are currently ex-
tending the mapping framework and refining elements of the
mapping process.

Between the extremely error-prone odometry and the
noisy, range-limited IR sensors, forming a good map-
making strategy presents many challenges. Throughout the
remainder of the academic year, we hope to construct a high
quality map-making system that will create reasonably good
maps of indoor hallway environments. With a map-making
framework in place, our short-term goal is to minimize the
odometry error produced as the robot walks. Turning intro-
duces more error than walking in a straight line, so we will
attempt to refine the way that odometry is computed while
turning. Custom calibration of the Tekkotsu walk engine,
fusion of data from the odometry and infrared sensors, and
perhaps even modification of the leg movements involved
in a turn are approaches we are considering for minimizing
odometry error.
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