
Stochastic Deliberation Scheduling using GSMDPs

Kurt D. Krebsbach
Department of Computer Science

Lawrence University
Appleton, WI 54912-0599

kurt.krebsbach@lawrence.edu

Abstract

We propose a new decision-theoretic approach for solv-
ing execution-time deliberation scheduling problems
using recent advances in Generalized Semi-Markov
Decision Processes (GSMDPs). In particular, we
use GSMDPs to more accurately model domains in
which planning and execution occur concurrently, plan-
improvement actions have uncertain effects and dura-
tion, and events (such as threats) occur asynchronously
and stochastically. We demonstrate a significant im-
provement in expressibility over previous discrete-time
approximate models in which mission phase duration
was fixed, failure events were synchronized with phase
transitions, and planning time was discretized into
constant-size planning quanta.

Introduction

Agents planning in overconstrained domains do not
have unlimited computational resources at their dis-
posal, and must therefore operate in a manner that is as
near to optimal as possible with respect to their goals
and available resources. Researchers have addressed
this issue by applying planning techniques to the plan-
ning process itself; i.e., a second level of planning is
conducted at a higher level of abstraction than the
base domain called the meta domain, with the higher-
level planning sometimes referred to as metaplanning,
or metacognition. Because the problem described here
involves both deciding which actions to take (planning)
and when to take them (in continuous time), we refer
to the problem as one of deliberation scheduling.

In general, deliberation scheduling involves deciding
which aspects of an agent’s plan to improve, what meth-
ods of improvement should be chosen, and how much
time should be devoted to each of these activities. In
particular, we describe a model in which two separate
planners exist: one, a base-level planner that attempts
to solve planning problems in the base domain, and two,
a meta-level planner deciding how best to instruct the
base-level planner to expend units of planning effort.

Copyright c© 2006, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

Both the meta and base domains are stochastic. Ac-
tions in the meta domain consist of a set of base do-
main problem configurations from which to choose,
each of which constitutes a planning problem of vary-
ing difficulty (the successful result of which is a plan
of corresponding quality), which might or might not
be solvable, and which takes an uncertain amount of
time to complete. Similarly, the base domain’s events
and actions can succeed or fail, and have continuously-
distributed durations. The goal of the meta-level plan-
ner is to schedule the deliberation effort available to
the base-level planner to maximize the expected utility
of the base domain plans. The fact that base planning
and execution occur concurrently further constrains the
time being allocated by the meta-level planner.

Deliberation Scheduling

In this paper we build on previous work on de-
liberation scheduling for self-adaptive circa (sa-

circa) (Goldman, Musliner, & Krebsbach 2001;
Musliner, Goldman, & Krebsbach 2003). In this ear-
lier work, we developed a meta-level planner (called
the Adaptive Mission Planner) as a specific compo-
nent of sa-circa to address domains in which the au-
tonomous control system onboard an unmanned aerial
vehicle (UAV) is self-adaptive; that is, it can modify its
later plans to improve its performance while executing
earlier ones. In this context, adaptation may be nec-
essary for a variety of reasons – because the mission
is changed in-flight, because some aircraft equipment
fails or is damaged, because the weather does not co-
operate, or perhaps because its original mission plans
were formed quickly and were never optimized.

A More Expressive Model of Uncertainty

While our previous work on deliberation scheduling
problems has involved discretizing time to make MDPs
tractable (Goldman, et.al.), recent advances in Gen-
eralized Semi-Markov Decision Processes (GSMDPs)
suggest a way to model time and the related proba-
bility distributions continuously to support both goal-
directed (Younes, Musliner, & Simmons 2003) and
decision-theoretic planning (Younes & Simmons 2004).
Intuitively, the semi-Markov process relaxes the Markov

assumption, which does not hold in general for prob-
lems involving continuous quantities such as time, and
continuous probability distributions governing action
and event durations. Of particular relevance here,
Younes introduces GSMDPs as a model for asyn-
chronous stochastic decision processes, and implements
a decision theoretic planner, called tempastic-dtp.
In this paper, we use tempastic-dtp to construct
decision-theoretic deliberation policies in a domain sim-
ilar to the UAV domain reported on earlier, and will
show it is a more flexible and effective approach for
several reasons:
• It accurately models the essentially continuous na-

ture of time and avoids biases due to the arbitrary
granule size chosen to discretize time.

• It models the uncertain durations of both actions
(controllable) and events (uncontrollable) as contin-
uous random variables, rather than as discretized ap-
proximations or constants.

• It provides a model of truly asynchronous events.
Because deliberation scheduling involves several dif-

ferent planners at different levels of abstraction, we
make a distinction between the base domain–where
the base-level planner plans actions for UAVs flying
a multi-phase mission, and the meta domain–in which
the meta-planner schedules deliberation effort for the
base-level planner. Meta-level policies are constructed
by tempastic-dtp in advance of the mission. While
base-level planning can occur both offline and online,
we focus on online base planning–as controlled by the
policy constructed during offline metaplanning–which
attempts to adapt to changing circumstances and to
continually improve the quality of base plans to be ex-
ecuted in the current or future mission phases.

Background

Stochastic models with asynchronous events can be
complex if the Markov assumption does not hold, such
as if event delays are not exponentially distributed for
continuous-time models. Still, the Markov assumption
is commonly made, and attention in the AI planning
literature is given almost exclusively to discrete-time
models which are inappropriate for asynchronous sys-
tems. We believe, however, that the complexity of asyn-
chronous systems is manageable.

Stochastic Discrete Event Systems

We are interested in domains that can be modeled as
stochastic discrete event systems (DESs). This class in-
cludes any stochastic process that can be thought of as
occupying a single state for a duration of time before an
event causes an instantaneous state transition to occur.
In this paper, for example, an event may constitute the
UAV agent reaching a waypoint, causing a transition
into a state in the next phase of the mission. We call
this a DES because the state change is discrete and is
caused by the triggering of an event. Although state
change is discrete, time is modeled most appropriately

as a continuous quantity. In the interest of brevity, we
describe a continuous-time, discrete-state system with
countable state space S as a mapping {X : [0,∞) → S}
in which transitions occur at strictly increasing time
points, can continue to infinite horizon (although ab-
sorbing events can be defined), and constant state is
maintained between the transitions (piecewise constant
trajectories).

Decision Processes

We now describe several important processes that can
be used to model various classes of DESs. For each
of these processes, we can add a decision dimension
by distinguishing a subset of the events as controllable
(called actions), and add rewards for decisions that lead
to preferred outcomes. The resulting process is known
as a decision process.

Markov Processes: A stochastic DES is a Markov
process if the future behavior at any time depends only
on the state at that time, and not in any way on how
that state was reached. Such a process is called time
inhomogeneous if the probability distribution over fu-
ture trajectories depends on the time of observation in
addition to the current state. Because the path to the
state cannot matter, the continuous probability distri-
bution function that describes the holding time in the
state must depend only on the current state, implying
that for continuous-time Markov processes, this holding
time is exponentially distributed (memoryless).

Semi-Markov Processes: In realistic domains,
many phenomena are not accurately captured by mem-
oryless distributions. The amount of time before a UAV
reaches a waypoint and proceeds to the next mission
phase, for example, clearly depends on how long the
UAV has been flying toward that waypoint. A semi-
Markov process is one in which, in addition to state sn,
the amount of time spent in sn (i.e., holding time) is also
relevant in determining state sn+1. Note, however, that
the time spent in the current state (needed by an SMP)
is not the same as the time of observation (needed for a
time inhomogeneous MDP). Also note that the path of
previous states taken to reach the current state is still
inconsequential in determining the next state.

Generalized Semi-Markov Processes: Both
Markov and semi-Markov processes can be used to
model a wide variety of stochastic DESs, but ignore
the event structure by representing only the combined
effects of all events enabled in the current state.
The generalized semi-Markov process (GSMP), first
introduced by Matthes (1962), is an established for-
malism in queuing theory for modeling stochastic DESs
that emphasizes the system’s event structure (Glynn
1989). A GSMP consists of a set of states S and a
set of events E. At any time, the process occupies
some state s ∈ S in which a subset Es of the events
are enabled. Associated with each event e ∈ E is
a positive trigger time distribution function F (t, e),

and a next-state distribution function pe(s, t). The
probability density function for F, h(s), can depend
on the entire execution history, which distinguishes
GSMPs from SMPs. This property allows a GSMDP,
unlike an SMDP, to remember if an event enabled in
the current state has been continuously enabled in
previous states without triggering – a critical property
for modeling asynchronous processes.

Specifying DESs with GSMDPs: To define a
DES, for all n ≥ 0 we define τn+1 and sn+1 as functions
of {τk, k ≤ n} and {sk, k ≤ n}. The GSMP model as-
sumes a countable set E of events. For each state s ∈ S
there is an associated set of events E(s) ⊆ E that will
be enabled whenever the system enters state s. At any
given time, the active events are categorized as new or
old. At time 0, all events associated with s0 are new
events. Whenever the system makes a transition from
sn to sn+1, events that are associated with both sn and
sn+1 are called old events, while those that are associ-
ated only with sn+1 are called new events.

When the system enters state sn, each new active
event e receives a timer value that is generated accord-
ing to a time distribution function F (t, e). The timers
for the active events run down toward zero until one or
more timers reach zero (at time τn+1). Events that have
zero clock readings are called triggering events (whose
set is denoted by En). The next state sn+1 is deter-
mined by a probability distribution pe(s, t). Any non-
triggering event associated with sn+1 will become an
old event with its timer continuing to run down. Any
non-triggering event not associated with sn+1 will have
its timer discarded and will become inactive. Finally,
any triggering event e that is associated with sn+1 will
receive a fresh timer value from F (t, e).

The Necessity for GSMPs

The fact that the timers of old events continue to run
down (instead of being reset) means that the GSMP
model is non-Markovian with respect to the state space
S. On the other hand, it is well-known that a GSMP
as described above can formally be defined in terms of
an underlying Markov chain {(sn, cn)|n ≥ 0}, where
sn is the state and cn is the vector of clock readings
just after the nth state transition (Glynn 1989). In
the special case where the timer distributions F (t, e)
are exponential with intensity λ(e) for each event e,
the process becomes a continuous-time Markov pro-
cess. While each of the aspects of stochastic deci-
sion processes listed above have been individually ad-
dressed in research on decision theoretic planning, no
existing approach deals with all aspects simultaneously.
Continuous-time MDPs (Howard 1960) can be used
to model asynchronous systems, but are restricted to
events and actions with exponential trigger time distri-
butions. Continuous-time SMDPs (Howard 1971) lift
the restriction on trigger time distributions, but can-
not model asynchrony. A GSMDP, unlike an SMDP,
remembers if an event enabled in the current state has

been continuously enabled in previous states without
triggering. This is key in modeling asynchronous
processes, which typically involve events that
race to trigger first in a state, but the event
that triggers first does not necessarily disable
the competing events (Younes 2005). For example,
in the UAV domain, the fact that a threat presents itself
in no way implies that other threats do not continue to
count down to their trigger times.

A GSMDP Model of Uncertainty

We have posed our deliberation scheduling problem as
one of choosing, at any given time, what phase of the
mission plan should be the focus of computation, and
what plan improvement method should be used. This
decision is made based on several factors, including:
• Which phase the agent is currently in;

• The expected duration of the current phase;

• The quality of the current plan for the current phase
and each remaining phase;

• The expected duration of each applicable improve-
ment operator;

• The probability of success for each applicable im-
provement operator;

• The expected marginal improvement if an improve-
ment operator is successfully applied to a given phase.

The mission is decomposed into a sequence of phases:

B = b1, b2, ..., bn (1)

The base-level planner, under the direction of the meta-
level planner, has determined an initial plan, P 0 made
up of individual base plans, p0

i , for each phase bi ∈ B:

P 0 = p0
1, p

0
2, ..., p

0
n (2)

P 0 is an element of the set of possible plans, P . We
refer to a P i ∈ P as the overall mission plan. The
current state of the system is represented by the cur-
rent time, mission phase, and mission plan. We model
mission phase duration as a continuous random vari-
able in which an event occurs according to a continu-
ous probability distribution that determines when the
agent crosses a phase boundary.

Plan Improvement

The meta-level planner has access to several plan im-
provement methods,

M = m1, m2, ..., mm (3)

At any time, t, the meta-level planner can choose to ap-
ply a method, mj , to a phase, bi. Applying this method
may yield a new plan for mission phase bi, producing a
new P t+1 as follows: if

P t = pt
1, p

t
2, . . . p

t
i, . . . , p

t
n (4)

then

P t+1 = pt
1, p

t
2, . . . p

t+1

i , . . . , pt
n , where pt

i 6= pt+1

i (5)

Of course, the application of this method may instead
fail, yielding P t+1 = P t, in which case the original
phase plan is retained. Similarly, the amount of time
it takes for the base planner to return a result is mod-
eled as a continuous random variable. This uncertainty
of duration implies one type of uncertainty of effect;
namely, that an action will effectively fail if it returns a
result too late to improve a plan for a phase that has al-
ready completed. In fact, if the currently-executing im-
provement action is relevant to the currently-executing
phase, the utility of even its successful completion is
constantly decreasing as less of the current phase will
benefit from any improvement result.

We represent differing degrees of danger per phase
by varying the average delay before certain threats (de-
layed events) are likely to occur. The probability of sur-
viving a given phase is a function of both the threats
that occur in that phase and the quality of the base
plan that is actually in place when that phase is ex-
ecuted. By successfully completing plan improvement
actions, new current or future phase plans increase the
probability of handling threats should they occur.

Reward

We assume a fixed distribution of potential rewards
among mission phases. In our example, it is worth
two units of reward for the UAV agent to survive long
enough to take an important reconnaissance photo.
While each phase will not necessarily be associated with
explicit reward, survival in that phase still implies re-
ward due to reward in future phases. The quality of a
phase plan is thus based on the probability of surviv-
ing it due to a plan that effectively handles the threats
(harmful events) that actually occur. The quality of the
overall plan is measured by how much reward the agent
actually achieves given the threats that actually occur
in a given simulation. The system improves its expected
reward by increasing expected survival and thus, future
reward potential. For example, if the UAV achieves its
mid-mission objective of taking a reconnaissance photo
it receives some reward (two units); it then receives the
balance of the possible reward by returning home safely
(one unit). There is no notion of receiving reward by
just surviving; the mission only exists to achieve a pri-
mary objective and, if possible, to recover the UAV (a
secondary objective).

Domain Description

Figure 1 exemplifies of each of the major domain com-
ponents written in ppddl+ (Younes 2003). States are
represented as a combination of binary predicates. Be-
cause ppddl+ restricts discrete state features to binary
predicates, non-binary but discrete state features (e.g.,
phase number) must be encoded with a set of binary
variables (e.g., phv1=1, phv2=1 encodes phase=3).1

1This restriction makes specifying action preconditions
and effects cumbersome, and could be fairly easily fixed by
adding a bounded integer type to ppddl+.

;;; A mission phase transition event.
(:delayed-event phase-2-to-3
:delay (exponential (/ 1.0 100.0))
:condition (and (alive)

(phv1) ; in ph 2
(not phv2))

:effect (phv2)) ; -> ph 3

;;; A deliberation action (with mean varied).
(:delayed-action improve-ph2-high
:delay (exponential (/ 1.0 (* 3.0 lambda)))
:condition (and (alive)) ; in any context
:effect (and (sp21) (not sp22))) ; -> high plan

;;; A threat (failure) event.
(:delayed-event die-phase-1-med
:delay (exponential (/ 1.0 300.0))
:condition (and (alive) (not phv1) (phv2)

(not sp11) (sp12))
:effect (not (alive)))

;;; A domain action.
(:delayed-action take-recon-picture
:delay (exponential 1.0)
:condition (and (alive) (not pic-taken)

(phv1) (not phv2)) ; in ph2
:effect (and (pic-taken)

(increase (reward) 2))) ; goal

;; The problem description.
(define (problem delib1)
(:domain UAV-deliberation)
(:init (alive)) ; begin alive in phase 0
(:goal (home)) ; goal to return safely
(:goal-reward 1) ; one unit for safe return
(:metric maximize (reward)))

Figure 1: ppddl+ Action and Event Descriptions.

Survival probabilities are encoded as two-bit values as
well; e.g., (sp11) and (sp12) cover low, medium, high,
and highest plan qualities for mission phase 1.

Planning Problem

In these experiments, the base-level agent starts out
alive in phase 0 with various survival probabilities pre-
established by existing plans for each mission phase.
The agent then begins execution of the plan for phase
0 immediately, and has the option of selecting any im-
provement actions applicable to phases 1 through 3. In
general, however, the agent is allowed to attempt to
improve the plan for the phase that it is currently exe-
cuting as well, as a new plan could add utility to the rest
of the phase if it is constructed in time to be “swapped
in” for the remainder of the phase. Finally, the mission
is over when one of two absorbing states are reached:
(not alive) or (home).

Uncertain Event Durations

Phase duration and threat delays are represented as
delayed events. The former reflects the fact that the
amount of time it will take for the UAV to navigate

threats and arrive at the next waypoint is uncertain;
the latter model the fact that threats to the agent can
trigger asynchronously according to a probability dis-
tribution. Phase transitions must happen in a prede-
fined order: the agent will not move on to phase 2 un-
til phase 1 has been completed; however, this is not
the case with threats. Much of the rationale for us-
ing tempastic-dtp is that events–especially harmful
events like threats leading to failure–do not invalidate
other harmful events. Therefore, the deliberation mech-
anism must be able to model a domain in which certain
combinations of threats can occur in any order, and
can remain enabled concurrently. Planning to handle
these combinations of threats given uncertain informa-
tion and an evolving world state is the primary reason
for performing online deliberation scheduling in the first
place: the asynchrony of the events and actions can
have a dramatic effect on the optimality of the plan,
and the amount of reward attainable.

Uncertain Action Durations

Improvement actions are also delayed: when the de-
liberation planner begins an improvement action, the
base-level planner will return an “answer” (either an
improved plan, or failure) at some future uncertain
time. As shown in Figure 1, this time is described by
the exponential time distribution function where λ is
varied. This reflects the fact that while we have there
exists some information on the performance of the base-
level planner, we cannot predict–based only on the plan-
ner inputs–the actual duration of the planning activity.
Modeling this uncertainty properly allows the overall
system to trade off uncertainties at the meta-level with
base-level costs, rewards, and uncertainties.

A second type of delayed action is a domain action.
In this domain, there is only one such non-deliberation
action: take-recon-picture. This action is funda-
mentally different from the other actions because it is
a physical action in the world (not a command to com-
mence deliberation on a specific planning problem), it
has a very short duration, and it constitutes the pri-
mary goal of the plan, thus earning the most reward.

Experiments
tempastic-dtp (t-dtp) accepts ppddl+ as an in-
put planning domain language. Based on this domain
description, it converts the problem into a GSMDP
which can then be approximated as a continuous-
time MDP using phase-type distributions (Younes &
Simmons 2004). This continuous-time MDP can be
solved exactly, for example by using value iteration,
or via a discrete-time solver after a uniformization
step. tempastic-dtp then uses Algebraic Decision Di-
agrams to compactly represent the transition matrix of
a Markov process, similar to the approach proposed by
Hoey et al. (1999). For our UAV deliberation schedul-
ing domain, t-dtp uses expected finite-horizon total
reward as the measure to maximize. Once the com-
plete policy is constructed, t-dtp provides a simulation

facility for executing policies given specific, randomly
generated environmental trajectories.

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 50 100 150 200 250 300

A
ve

ra
ge

 R
ew

ar
d

(m
ax

 3
.0

)

Average Deliberation Action Delay

Action Delays Equal
Action Delays in 1-3-5 Ratio

Figure 2: Average reward as a function of delibera-
tion action duration.

Figure 2 illustrates the effect of average deliberation
action duration (denoted as the variable lambda in Fig-
ure 1) on average reward obtained. For each average
duration, tempastic-dtp constructs a policy for the
planning problem partially described in Figure 1. This
policy is then used to dictate the agent’s behavior in
1000 simulations of the agent interacting with its envi-
ronment. In each simulation, random values are chosen
according to the stated probability distributions to de-
termine particular delays of actions and events for a
single simulation run. There are three possible results
of a given simulation:
1. In the best case, the agent survives the threats en-

countered and returns home safely. This agent will
earn two points of reward in mid-mission for achiev-
ing the goal of taking the reconnaissance picture, and
one point for a safe return, for a maximum total re-
ward of three points (i.e., the maximum y value).

2. A partial success occurs when the agent survives long
enough to take the reconnaissance picture (which can
be electronically transmitted back to base), but does
not return home. Such an agent earns two points.

3. In the worst case, the agent fails to construct plans
that allow it to survive some early (pre-photo) threat,
resulting in a zero-reward mission.

Figure 2 contrasts the average reward obtained under
two different assumptions. In one case (Action Delays
Equal), all deliberation action delays obey an exponen-
tial probability distribution with the indicated action
delay mean (x value); i.e., the average delay for a de-
liberation action resulting in a high-quality plan is the
same as the average delay associated with producing a
medium-quality plan. In the other case, action delay
means obey a 1-3-5 ratio for medium, high, and high-
est quality plans respectively. For example, an average
delay of 50 indicates that a deliberation action with a
medium-value result will obey an exponential time dis-

tribution with a mean of 50. The two higher quality
planning tasks will take correspondingly longer on av-
erage, at 150 and 250 average time units respectively.
As expected, higher rewards can be obtained in the first
case because producing higher quality plans is less ex-
pensive for a given value of x.

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 50 100 150 200 250 300

A
ve

ra
ge

 R
ew

ar
d

(m
ax

 3
.0

)

Average Delay For Phase, Action, or Threat

Varied Action Delay
Varied Threat Delay
Varied Phase Delay

Figure 3: A comparison of average reward obtained
as average delay varies for mission phases,
agent actions, and environmental threats.

Figure 3 demonstrates the effect of varying the av-
erage delays for the three main sources of uncertainty:
length of mission phase, duration of agent deliberation
action, and delay before a triggered threat has its harm-
ful effect. For each average delay (x value) between 5
and 300 (in increments of 5) a policy is constructed and
followed for 1000 simulations. The actual rewards (of 0,
2, or 3) are then averaged and plotted as each source of
uncertainty is varied while holding the other two con-
stant; thus, each curve constitutes 75,000 simulations
for a total of 225,000 simulations. As expected, agent
performance declines as its own actions take longer, but
improves as threats take longer to unfold. Performance
also improves as phases take longer, since this affords
the metaplanner more time to improve base plans be-
fore those base plans are executed; still, the effect is
less pronounced as longer phases also give threats more
time to occur. By modeling the problem domain more
expressively as a GSMDP, the planner can take into
account the interplay of these various uncertainties–at
both the meta and base level–in a way that was previ-
ously not possible.

Conclusion

We introduce a new approach to more expressively
modeling several sources of uncertainty inherent in
overconstrained planning problems. By exploiting re-
cent research results in the area of Generalized Semi-
Markov Decision Processes, we demonstrate that pre-
viously inexpressible problems of deliberation schedul-
ing can now be both stated and solved, allowing meta-
planning agents to make better decision-theoretic trade-

offs in time-pressured, execution-time situations.

Acknowledgments

Many thanks to Haakan Younes for developing, dis-
tributing, and supporting tempastic-dtp, and for
prompt, thorough answers to many questions. Thanks
also to Vu Ha and David Musliner for fruitful discus-
sions and useful comments on earlier drafts.

References

Glynn, P. 1989. A GSMP formalism for discrete event
systems. Proceedings of the IEEE 77(1):14–23.

Goldman, R. P.; Musliner, D. J.; and Krebsbach, K. D.
2001. Managing online self-adaptation in real-time en-
vironments. In Proc. Second International Workshop
on Self Adaptive Software.

Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic planning using decision diagrams.
In Laskey, K. B., and Prade, H., eds., Proceedings of
the Fifteenth Conference on Uncertainty in Artificial
Intelligence, 279–288. Stockholm, Sweden: Morgan
Kaufmann Publishers.

Howard, R. A. 1960. Dynamic Programming and
Markov Processes. New York: John Wiley & Sons.

Howard, R. A. 1971. Dynamic Probabilistic Systems,
Volume II. New York, NY: John Wiley & Sons.

Matthes, K. 1962. Zur theorie der bedienungsprozesse.
In Transactions of the Third Prague Conf. on Informa-
tion Theory, Statistical Decision Functions, Random
Processes, 513–528. Liblice, Czechoslovakia: Publish-
ing House of the Czechoslovak Academy of Sciences.

Musliner, D. J.; Goldman, R. P.; and Krebsbach, K. D.
2003. Deliberation scheduling strategies for adaptive
mission planning in real-time environments. In Proc.
Third Int’l Workshop on Self Adaptive Software.

Younes, H. L. S., and Simmons, R. G. 2004. Solv-
ing generalized semi-Markov decision processes using
continuous phase-type distributions. In Proceedings of
the Nineteenth National Conference on Artificial In-
telligence, 742–747. San Jose, California: American
Association for Artificial Intelligence.

Younes, H.; Musliner, D.; and Simmons, R. 2003. A
framework for planning in continuous-time stochastic
domains. In Proceedings of the Thirteenth Conference
on Automated Planning and Scheduling.

Younes, H. 2003. Extending PDDL to model stochas-
tic decision processes. In Proceedings of the ICAPS-03
Workshop on PDDL, 95–103.

Younes, H. L. S. 2005. Verification and Planning
for Stochastic Processes with Asynchronous Events.
Ph.D. Dissertation, Department of Computer Science,
Carnegie Mellon University, Pittsburgh, PA.

