
Computer Science: Not about Computers, Not Science

Kurt D. Krebsbach
Department of Mathematics and Computer Science, Lawrence University, Appleton, Wisconsin 54911

Abstract— This paper makes two claims about the funda-
mental nature of computer science. In particular, I claim
that—despite its name—the field of computer science is
neither the study of computers, nor is it science in the
ordinary sense of the word. While there are technical ex-
ceptions to both claims, the nature, purpose, and ultimately
the crucial contributions of the beautiful discipline of com-
puter science is still widely misunderstood. Consequently, a
clearer and more consistent understanding of its essential
nature would have an important impact on the awareness of
students interested in computing, and would communicate a
more informed perspective of computer science both within
academia and in the larger society.

Keywords: computer, science, education, algorithms

1. Not about computers
Pick up almost any book on the history of computer

science and Chapter 1 will be devoted to the evolution of the
machines [1]: Pascal’s adding machine, the brilliant designs
of Babbage’s Difference Engine and Analytical Engine,
Turing’s Bombe and Flowers’ Colossus at Bletchley Park,
and the ENIAC at the University of Pennsylvania, to name a
few. It is no secret that every computer scientist is fascinated
by—and enormously indebted to—these and many other
magnificent achievements of computing machinery.

But is our discipline called “computer science” (CS)
because we use the scientific method to empirically study
these physical computing machines? I believe that few
computer scientists would answer affirmatively, for it is not
a computing machine that is the chief object of our study:
it is the algorithm.

1.1 The centrality of algorithms
I am certainly not the first to claim that CS has been

around long before modern electronic computers were in-
vented; or in fact, before any computing machines were in-
vented.1 Let us instead consider that CS began as a discipline
when an algorithm (i.e., a procedure for achieving a goal)
was first discovered, expressed, or analyzed. Of course, we
can’t know precisely when this was, but there is general
agreement that Euclid (mid-4th century BCE) was among the

1Indeed, the term “computer” was originally used to refer to a person.
The first known written reference dates from 1613 and meant "one who
computes: a person performing mathematical calculations” [2]. As recently
as the start of the Cold War, the term was used as an official job designation
in both the military and the private sector.

first computer scientists, and that his method for computing
the greatest common divisor (GCD) of any two positive
integers is regarded as the first documented algorithm. As
Donald Knuth—author of the discipline’s definitive multi-
volume series of texts on algorithms—states: “We might call
Euclid’s method the granddaddy of all algorithms, because
it is the oldest nontrivial algorithm that has survived to
the present day” [3]. Knuth’s version of Euclid’s GCD
algorithm [4] is shown in Figure 1.

E1. [Find remainder.] Divide m by n and let r be the remainder.
(We will have 0 ≤ r < n.)

E2. [Is it zero?] If r = 0 the algorithm terminates;
n is the answer.

E3. [Interchange.] Set m← n, n← r, and go back to step E1.

Fig. 1: Euclid’s 2300-year-old algorithm for finding the
greatest common divisor of two positive integers m and n.

1.2 Requirements of algorithms
Let us use this simple example to state the requirements

of a valid algorithm (adapted from [5]):
1) It consists of a well-ordered collection of steps. From

any point in the algorithm, there is exactly one step to
do next (or zero when it halts).

2) The language of each step is unambiguous, and re-
quires no further elaboration. The “computing agent”
(CA) responsible for executing this algorithm (whether
human or machine) must have exactly one meaning for
each step. For example, in GCD, the CA must have
a single definition of “remainder”.

3) Each step is effectively computable, meaning that the
CA can actually perform each step. For instance, the
CA must be able to compute (via a separate algorithm)
a remainder given two integer inputs.

4) The algorithm produces a result (here, an integer).
5) It halts in a finite amount of time. Intuitively, each time

E1 is executed, r strictly decreases, and will eventually
reach r = 0, causing it to halt at E2.

Finally, a mathematical proof of correctness exists to
show that GCD is correct for all legal inputs m and n,
although correctness itself is not a strict requirement for
algorithms. (As educators we see more incorrect, but still
legitimate, algorithms than correct ones!) The importance of
an algorithm’s close relationship to mathematical proof will
become apparent shortly.



1.3 Algorithms as abstract objects
Note that so far we have assumed no particular computing

device. No arguments about PCs vs Macs, and therefore
debates over the merits of Windows, OSx, and Linux are
moot. In fact, we have not even been forced to choose a
particular programming language to express an algorithm.

So algorithms—our fundamental objects of inquiry—do
not depend on hardware. Our interest is not so much in
specific computers, but in the nature of computing, which
asks a different, deeper question: What is it possible to
compute? For this, Alan Turing provides the answer.

1.3.1 Turing machines
Alan Turing, rightfully considered the father of modern

computing, provided us with this insight before the invention
of the first general purpose programmable computer. In
1936, Turing presented a thought experiment in which he
described a theoretical “automated machine” that we now
call a Turing machine. A Turing machine (TM) is almost
comically simple, consisting of an infinitely-long tape of
cells upon which a single read/write head can scan left
and right one cell at a time. At each step, the head can
read a symbol, write a symbol, move left or right one cell,
and change state. An example TM instruction is shown in
Figure 2. Turing further showed that a TM, given instructions

IF state = 3 and symbol = 0
THEN write 1, set state to 0, move right

Fig. 2: A sample Turing machine instruction.

no more complicated than in Figure 2, can calculate anything
that is computable, regardless of its complexity. Several
corollaries of this result provide insight into the nature of
the abstract objects we call algorithms:

• A TM can simulate any procedure that any mechanistic
device (natural or artificial) can carry out.

• A TM is at least as powerful as any analog, serial or
parallel digital computer. They are equivalent in power,
and can implement the same set of algorithms.

• Any general-purpose programming language that in-
cludes a jump instruction (to transfer control) is suf-
ficient to express any algorithm (Turing-equivalence).

• Not every problem has an algorithmic solution.
So anything a physical computer can compute, a TM

can too. The most advanced program in the world can be
simulated by a simple TM - a machine that exists only in
the abstract realm. . . no computer required! This is an im-
portant reason why CS is not fundamentally about physical
computers, but is rather based on the abstract algorithms and
abstract machines (or humans) to execute them.2

2However, see Section 1.5 for more on the obvious usefulness of
implementing and executing programs on modern computers!

1.4 Evaluating algorithms
Computer science is not only about discovering algo-

rithms. Much research is also devoted to evaluating algo-
rithms. Here are some questions we ask when we compare
two algorithms that achieve the same goal:

1) Correctness: Is the result guaranteed to be a solution?
2) Completeness: Does it always find a solution if one

exists?
3) Optimality: Is the first solution found always a least-

cost (best) solution?
4) Time Complexity: How many units of work (e.g.,

comparisons) are required to find a solution?
5) Space Complexity: How much memory is needed to

find a solution?
A core area of CS involves evaluating algorithms inde-

pendently of computer, operating system, or implemented
program. The first three questions pertain to the type of
answer an algorithm yields. Note that none of the answers
to these questions depend on particular computer hardware
or software.

Questions 4 and 5 pertain to an algorithm’s computational
complexity, which measures the amount of some resource
(often time or space) required by a particular algorithm to
compute its result. An algorithm is more efficient if it can
do the same job as another algorithm with fewer resources.

But there is a counterintuitive insight lurking here. Even
concerning issues of efficiency, it is of little use to know how
many resources are required of a specific implementation of
that algorithm (i.e., program), written in a specific version of
a specific programming language, running under a specific
operating system, on specific computer hardware, possibly
hosting other processes on a specific network. Too many
specifics! Instead, we want our hard-earned analysis to tran-
scend all of these soon-to-be-obsolete specifics. Although
space constraints preclude a sufficient explanation here, the
sub-discipline of computational complexity provides a well-
defined way to classify algorithms into classes according
to the “order of magnitude” of the resources required as
a function of the input size of the problem, and provides
another illustration of the centrality and abstract nature of
algorithms.

1.5 Implementing and executing algorithms
One of the most important and profound differences

between modern CS (as a branch of mathematics) and pure
mathematics is the ability to write computer programs to
implement algorithms and then execute these programs on
different sets of inputs without modifying the program.

This ability—to actually automate computation rather than
simply describe it—is by far the most practical benefit of
modern computing. For this reason, it is also the most
visible aspect to the general public, and even, I would
claim, to other academic disciplines (who tend to equate



“computer scientists” and “coders”). But although everyone
agrees on the important role of programming, programs and
algorithms are not equivalent. Abelson and Sussman express
this distinction eloquently in their classic text: “First, we
want to establish the idea that a computer language is not just
a way of getting a computer to perform operations but rather
that it is a novel formal medium for expressing ideas about
methodology” [6]. In other words, programming is important
not only for the machine-executable code produced but also
to provide an appropriate set of abstractions with which to
contemplate and express algorithms.

2. Not science
The authoritative Oxford English Dictionary defines CS as

“the branch of knowledge concerned with the construction,
programming, operation, and use of computers.” This paper
takes the opposite view. How can a “science” be primarily
about construction, operation, or use of any machine?

Fellows and Parberry argue that: "Computer Science is no
more about computers than astronomy is about telescopes,
biology is about microscopes or chemistry is about beakers
and test tubes" [7]. And while I have always liked the
accuracy and clarity of the quotation, it is true because nei-
ther science nor mathematics is about tools. Computers are
tools, and the general-purpose computer is about as useful
as a tool can get. Engineering is about tools, and computer
engineering is about designing and building incredibly useful
tools for CS and really for every other discipline as well.

2.1 Mathematics, science, and engineering
Many would acknowledge that what we mean by the

term “computer science” is an odd blend of mathematics,
science, and engineering. Paul Graham even argues for the
decomposition of the field into its component parts when he
admits: “I’ve never liked the term ‘computer science’. . . [it]
is a grab bag of tenuously related areas thrown together by
an accident of history, like Yugoslavia” [8]. Similarly, John
McCarthy, coiner of the term “artificial intelligence” and
inventor of the second-oldest programming language (LISP),
implored practitioners to keep the distinction clear: “Science
is concerned with finding out about phenomena, and engi-
neering is concerned with making useful artifacts. While
science and engineering are closer together in computer
science than in other fields, the distinction is important” [9].

2.2 Procedural epistemology
In emphasizing the central role of computational process

and abstraction in CS, Abelson and Sussman state: “Un-
derlying our approach to this subject is our conviction that
‘computer science’ is not a science and that its significance
has little to do with computers” [6]. They go on to associate
CS with mathematics in describing the computer revolution
as “the emergence of what might best be called procedural

epistemology”, but distinguish the two by saying, “Math-
ematics provides a framework for dealing precisely with
notions of ‘what is.’ Computation provides a framework for
dealing precisely with notions of ‘how to”’ [6].

I think the brilliance of this statement lies in the term
procedural epistemology, i.e., that fundamentally we are in
search of which procedures (algorithms) exist, and which
can not exist (as Turing and others have proven). One of the
central claims of this paper is that CS is fundamentally a
branch of mathematics - but not because the most important
algorithms compute results that are of interest to mathemati-
cians. It is because algorithms themselves are abstract objects
in the same way that proofs are abstract objects. They are
not physical, but nonetheless exist, waiting to be discovered.

2.3 Empiricism
The primary definition of “science” from Princeton’s

Wordnet is: “The study of the physical and natural world
using theoretical models and data from experiments or
observation” [10].

While I have already discussed the first part, I would
argue that the second part of the definition involving the
empirical aspect of science is likewise not the chief method
of investigation in CS (although there are recent exceptions,
as discussed in Section 3.2). Science follows the scientific
method, which involves forming falsifiable hypotheses, de-
vising experiments to test them, and observing the results
with the hope of building converging evidence for or against
them. This model of investigation is appropriate for observ-
ing and predicting natural (and evolving) processes, but not
for eternal objects such as proofs and algorithms, which are
not directly observable. Surely, as our knowledge grows, we
develop a richer set of abstractions with which to express
and investigate them, but the objects themselves have always
been there and always will be, waiting to be “discovered”
by those interested in the “how to.”

Ultimately, because algorithms are abstract and exist in
neither the natural (or even physical) world, and because we
therefore do not use the scientific method as the primary tool
to investigate them, CS is not fundamentally science.

3. Caveats
My intent in this paper is to confine my claims to what is

“primary” or “fundamental” to the discipline of CS, noting
in several places when claims should not be interpreted as
absolute or exclusionary. I now briefly discuss several of
these important exceptions.

3.1 Computer hardware
While the design and manufacture of computer hardware

is more closely identified with electrical engineering, stu-
dents of CS can benefit greatly from instruction in hardware
design, especially in the interface between the native instruc-
tion set of the computer (software), and the various levels



of hardware implementation of those instructions; in fact,
the best computer scientists are those who can cross over to
related disciplines and see the same objects from multiple
perspectives. Learning to think like an electrical engineer
makes one a better computer scientist, and vice versa, but
that does not make one a subset of the other.

3.2 Empirical science
While I have argued that computer scientists do not

primarily employ the scientific method, the relatively new
sub-discipline of experimental algorithmics is a promising
exception to this rule. In her recent text, Catherine Mc-
Geoch explains: “Computational experiments on algorithms
can supplement theoretical analysis by showing what algo-
rithms, implementations, and speed-up methods work best
for specific machines or problems” [11]. While the idea
of empirically measuring the performance of implemented
programs has long been in the toolbox of practicing soft-
ware engineers, the idea of a principled study of strategies
for tuning and combinatorially testing algorithms and data
structures is newer, and promises to be of great practical
value. However, even McGeoch explicitly suggests that
experimental algorithmics fill a supplemental need in the
discipline, and that the student can only benefit from these
new methods by first having a solid working knowledge of
the principles of algorithm analysis and data structures.

4. Societal impact
Despite serving as an umbrella term for a group of

variously related efforts involving mathematics, science, and
engineering, the central questions of CS revolve around
abstract objects we call algorithms: identifying them, dis-
covering them, evaluating them, and often implementing
and executing them on physical computers. Thoughtfully
unpacking the confusion between computers and computing
can have important benefits for how the larger society—
including future computer scientists—perceives of and ulti-
mately considers our useful and fascinating discipline.

4.1 Public perception
At one end of the public spectrum are those who see

computer scientists as super users; humans who have formed
a special bond with computers (if not other humans?) and are
therefore capable of inferring the correct sequence of menus,
settings, and other bewildering incantations without ever
having read the manual. Fortunately, as society has become
more technically savvy this misunderstanding is fading, and
perhaps the majority instead think that computer scientist is
another name for super programmer.

Of course, this misconception is less problematic, as pro-
gramming is, in fact, an important aspect of CS, as described
in Section 1.5. And, in fact, many computer scientists are
expert programmers. But, useful as they are, programs are
not the core of CS. Algorithms exist regardless of whether

someone has coded them, but not vice versa. Algorithms
come first. There are excellent computer scientists whose
research does not involve much programming (e.g., analysis
of algorithms), just as there are excellent programmers who
might not do much interesting CS beyond coding to detailed
specs. But the conflation of these terms can lead people to
mistakenly believe that an undergraduate curriculum in CS
should consist of writing one big program after another,
or learning a new programming language in every new
course. These are simply not accurate reflections of the work
computer scientists actually do.

4.2 Undergraduate expectations
My experience as an academic adviser has helped to mo-

tivate this paper. With the proliferation of mobile computing
and omnipresent Internet, there appears to be a lot of enthu-
siasm for our field, but I often find that eager undergraduates
are either excited about something that is not CS (gaming
comes to mind), or stems from an advanced topic that
definitely is CS (e.g., machine learning), but requires a strong
foundation in algorithms, data structures, and programming
abstractions to place the advanced concepts in context.
Understanding the state of the art gives promising students
the best opportunity to contribute something genuinely new.

Unfortunately, students have been led to believe that
there are massive shortcuts to these fundamentals. . . online
tutorials, cut-and-paste code, developer boot camps, and so
on. And while each of these methods can have their uses,
they are no substitute for the foundation that will serve a
student throughout an entire career. In rare cases, shortcuts
result in short-term success, but fundamental abstractions
provide the foundation upon which to continue building and
adapting throughout a lifetime of learning and innovating.

References
[1] P. E. Ceruzzi, Computing: A Concise History. The MIT Press, 2012.
[2] D. A. Grier, When Computers Were Human. Princeton, NJ, USA:

Princeton University Press, 2007.
[3] D. E. Knuth, The Art of Computer Programming, Volume 2 (3rd Ed.):

Seminumerical Algorithms. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1997.

[4] ——, The Art of Computer Programming, Volume 1 (3rd Ed.):
Fundamental Algorithms. Redwood City, CA, USA: Addison Wesley
Longman Publishing Co., Inc., 1997.

[5] G. M. Schneider, J. Gersting, and S. Baase, Invitation to Computer
Science: Java Version, 1st ed. Pacific Grove, CA, USA: Brooks/Cole
Publishing Co., 2000.

[6] H. Abelson, G. Sussman, and J. Sussman, Structure and Interpretation
of Computer Programs, 2nd ed. New York, NY, USA: McGraw-Hill,
Inc., 1997.

[7] M. R. Fellows and I. Parberry, “SIGACT trying to get children excited
about CS,” Computing Research News, vol. 5, no. 1, p. 7, Jan. 1993.

[8] P. Graham, Hackers and Painters: Essays on the Art of Programming.
Sebastopol, CA, USA: O’Reilly & Associates, Inc., 2004.

[9] J. McCarthy, “Merging CS and CE disciplines is not a good idea,”
Computing Research News, vol. 5, no. 1, pp. 2–3, Jan. 1993.

[10] Princeton University. (2010) About wordnet. [Online]. Available:
http://wordnet.princeton.edu

[11] C. C. McGeoch, A Guide to Experimental Algorithmics, 1st ed. New
York, NY, USA: Cambridge University Press, 2012.


