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Abstract. This paper studies the analogue of Hurwitz groups and surfaces in

the context of harmonic group actions on finite graphs. Our main result states

that maximal graph groups are exactly the finite quotients of the modular
group Γ =

〈
x, y | x2 = y3 = 1

〉
of size at least 6. As an immediate conse-

quence, every Hurwitz group is a maximal graph group, and the final section

of the paper establishes a direct connection between maximal graphs and Hur-
witz surfaces via a construction due to Brooks and Makover.

1. Introduction

Many recent papers have explored tantalizing analogies between Riemann sur-
faces and finite graphs (e.g. [2],[3],[4],[6],[7],[8],[11],[12]). Inspired by the Accola-
Maclachlan [1], [15] and Hurwitz [13] genus bounds for holomorphic group actions
on compact Riemann surfaces, we introduced harmonic group actions on finite
graphs in [11], and established sharp linear genus bounds for the maximal size of
such actions. As noted in the introduction to [11], it would be interesting to classify
the groups and graphs that achieve the upper bound 6(g − 1), thereby providing
a graph-theoretic analogue of the study of Hurwitz groups and surfaces – those
compact Riemann surfaces S of genus g ≥ 2 such that Aut(S) has maximal size
84(g − 1).

The investigation of Hurwitz groups has been a rich and active area of research,
and much is known about their classification including a complete analysis of the
26 sporadic simple groups: 12 of them (including the Monster!) are Hurwitz, while
the other 14 are not (see [9], [10] for an overview). The starting point for work
on Hurwitz groups is the following generation result: a finite group G is a Hurwitz
group if and only if it is a non-trivial quotient of the (2,3,7)-triangle group ∆ with
presentation

∆ =
〈
x, y | x2 = y3 = (xy)7 = 1

〉
.

That is: the Hurwitz groups are exactly the finite groups generated by an element
of order 2 and an element of order 3 such that their product has order 7. The con-
nection between the abstract group ∆ and Hurwitz groups comes from the fact that
Hurwitz surfaces arise as branched covers of the thrice-punctured Riemann sphere
with special ramification. Such covers are nicely classified by the fundamental group
of the punctured sphere, which is a free group on two generators.

The main result of this paper is an analogous generation result for maximal graph
groups – those finite groups of size 6(g− 1) that act harmonically on a finite graph
of genus g ≥ 2:
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Theorem 1.1. A finite group G is a maximal graph group if and only if |G| ≥ 6 and
G is a quotient of the modular group Γ with presentation Γ =

〈
x, y | x2 = y3 = 1

〉
.

That is: the maximal graph groups are exactly the finite groups generated by an
element of order 2 and an element of order 3. As an immediate and surprising
corollary, we have:

Corollary 1.2. Every Hurwitz group is a maximal graph group.

As in the case of Hurwitz groups, the connection between the modular group Γ
and maximal graph groups comes from the fact that maximal graphs occur as har-
monic branched covers of trees (genus 0 graphs) with special ramification (Propo-
sition 2.9). In order to classify such covers in general, we developed a harmonic
Galois theory for finite graphs in [12], and the resulting concrete description of
harmonic branched covers is the main tool used in the proof of Theorem 1.1, which
we present in section 3. As preparation, we summarize the relevant background
concerning harmonic group actions and Galois theory for finite graphs in section 2.

As mentioned above, the fact that every Hurwitz group is a maximal graph
group comes as a surprise, because the relation between Riemann surfaces and
finite graphs is largely analogical, rather than arising from a precise correspondence.
However, there are a variety of direct connections between Riemann surfaces (and
more generally algebraic curves) and finite graphs (see e.g. [2],[5],[6],[7],[16]). Of
particular interest for us is the construction due to Brooks and Makover in [5]
whereby a compact Riemann surface is associated to an oriented 3-regular graph.
In the final section of this paper, we show that our theory meshes well with this
construction in the following sense: if G is a maximal graph group, then G acts
maximally on a 3-regular graph X. Moreover, the G-action endows X with an
orientation, and the Brooks-Makover construction applied to X yields a compact
Riemann surface S(X) on which G acts as a group of holomorphic automorphisms.
Moreover, if G is actually a Hurwitz group, then the resulting surface S(X) is a
Hurwitz surface with automorphism group G (Theorem 4.4). Thus, the Brooks-
Makover construction provides a deep and unexpected link between the harmonic
Galois theory of finite graphs and the Galois theory of Riemann surfaces.

2. Harmonic Group Actions

In this section, we briefly review some of the definitions and results from [4],
[11], and [12]. To begin, by a graph we mean a finite multi-graph without loop
edges: two vertices may be connected by multiple edges, but no vertex has an edge
to itself. We denote the (finite) vertex-set of a graph X by V (X), and the (finite)
edge-set by E(X). For a vertex x ∈ V (X), we write x(1) for the subgraph of X
induced by the edges incident to x:

V (x(1)) := {x} ∪ {w ∈ V (X) | w is adjacent to x}
E(x(1)) := {e ∈ E(X) | e is incident to x}.

The genus of a connected graph X is the rank of its first Betti homology group:
g(X) := |E(X)| − |V (X)|+ 1.

Definition 2.1. A morphism of graphs φ : Y → X is a function φ : V (Y )∪E(Y )→
V (X) ∪ E(X) mapping vertices to vertices and such that for each edge e ∈ E(Y )
with endpoints y1 6= y2, either φ(e) ∈ E(X) has endpoints φ(y1) 6= φ(y2), or
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φ(e) = φ(y1) = φ(y2) ∈ V (X). In the latter case, we say that the edge e is
φ-vertical. φ is degenerate at y ∈ V (Y ) if φ(y(1)) = {φ(y)}, i.e. if φ collapses
a neighborhood of y to a vertex of X. The morphism φ is harmonic if for all
vertices y ∈ V (Y ), the quantity |φ−1(e′)∩y(1)| is independent of the choice of edge
e′ ∈ E(φ(y)(1)).

y

φ1

e′ e′′

φ2

Figure 1. Each morphism is given by vertical projection. φ1 is
not harmonic at y, because the edge e′ has two pre-images incident
to y, while the edge e′′ has only one. The morphism φ2 is harmonic.

Definition 2.2. Let φ : Y → X be a harmonic morphism between graphs, with X
connected. If |V (X)| > 1 (i.e. if X is not the point graph ?), then the degree of
the harmonic morphism φ is the number of pre-images in Y of any edge of X (this
is well-defined by [4], Lemma 2.4). If X = ? is the point graph, then the degree of
φ is defined to be |V (Y )|, the number of vertices of Y .

Definition 2.3. Suppose that G ≤ Aut(Y ) is a (necessarily finite) group of au-
tomorphisms of the graph Y , so that we have a left action G × Y → Y of G on
Y . We say that (G, Y ) is a faithful group action if the stabilizer of each connected
component of Y acts faithfully on that component. Note that this condition is
automatic if Y is connected.

Given a faithful group action (G, Y ), we denote by G\Y the quotient graph with
vertex-set V (G\Y ) = G\V (Y ), and edge-set

E(G\Y ) = G\E(Y )− {Ge | e has endpoints y1, y2 and Gy1 = Gy2}.
Thus, the vertices and edges of G\Y are the left G-orbits of the vertices and edges
of Y , with any loop edges removed. There is a natural morphism φG : Y → G\Y
sending each vertex and edge to its G-orbit, and such that edges of Y with endpoints
in the same G-orbit are φG-vertical. As demonstrated in Figure 2, the quotient
morphism φG is not necessarily harmonic, which motivates the following definition.

Definition 2.4. Suppose that (G, Y ) is a faithful group action. Then (G, Y )
is a harmonic group action if for all subgroups H < G, the quotient morphism
φH : Y → H\Y is harmonic.

The condition in Definition 2.4 is quite restrictive, but the following proposition
provides a simple criterion for harmonicity:

Proposition 2.5 ([12] Prop. 2.7; [11] Prop. 2.5). Suppose that (G, Y ) is a faithful
group action. Then (G, Y ) is a harmonic group action if and only if for every vertex
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e1

e2

e3

φC
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Ce3

Figure 2. The cyclic group C = Z/2Z acts faithfully on the upper
graph by interchanging the edges e1 and e2 while fixing the edge
e3. The quotient morphism φC is not harmonic, because the edge
of the quotient graph corresponding to the orbit Ce3 has only one
pre-image (the edge e3), while the edge corresponding to Ce1 has
two preimages (e1 and e2).

y ∈ V (Y ), the stabilizer subgroup Iy ≤ G acts freely on the edge-set E(y(1)). Equiv-
alently, (G, Y ) is harmonic if and only if (after assigning an arbitrary direction to
each edge of Y ), the stabilizer subgroup of every directed edge is trivial.

By Proposition 2.5, if (G, Y ) is a harmonic group action, then no directed edge
of Y is fixed by a non-identity element of G, which implies that the stabilizers
of (non-directed) edges of Y are either trivial or of order 2. That is: if the edge
e ∈ E(Y ) is sent to itself by an element τ ∈ G, then τ is an involution that switches
the two endpoints of e. We refer to such an edge e as flipped, and if there are
no flipped edges, then we say that the harmonic group action (G, Y ) is unflipped.
As explained in section 2 of [12], any harmonic group action (G, Y ) has a unique
unflipped model, obtained by replacing each flipped edge e with a pair of edges e, e′

that are interchanged by the involution τ .

2.1. Genus Bounds. In [11], we established graph-analogues of the linear genus
bounds for the maximal size of the automorphism group of a compact Riemann
surface of genus g ≥ 2. The situation for surfaces, as developed by Hurwitz [13],
Accola [1], and Maclachlan [15], goes as follows. For each g ≥ 2, define

N(g) := max{|Aut(S)| | S is a compact Riemann surface of genus g}.
Then 8(g+ 1) ≤ N(g) ≤ 84(g− 1), and both of these bounds are sharp in the sense
that the extreme values 8(g+ 1) and 84(g− 1) are each attained infinitely often. S
is called a Hurwitz surface if it attains the upper bound: |Aut(S)| = 84(g(S)− 1).
A finite group G is called a Hurwitz group if there exists a Hurwitz surface S with
automorphism group isomorphic to G. The smallest Hurwitz group is PSL2(F7)
which occurs in genus 3 as the automorphism group of Klein’s quartic curve defined
in homogeneous coordinates by the equation

x3y + y3z + z3x = 0.

We now describe the graph-theoretic versions of these results from [11]. For each
g ≥ 2, define

M(g) := max{|G| | G acts harmonically on a connected graph of genus g}.
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Then 4(g−1) ≤M(g) ≤ 6(g−1), and these bounds are sharp in the sense that the
extreme values 4(g − 1) and 6(g − 1) are each attained infinitely often. Moreover,
unlike the case of Riemann surfaces, these two extremes are actually the only values
taken by the function M(g). A connected graph Y is called a maximal graph if it
attains the upper bound, i.e. if there exists a finite group G acting harmonically
on Y with |G| = 6(g(Y )−1). In this case we call G a maximal graph group and say
that G acts maximally on Y . The smallest maximal graph group occurs already in
genus 2. In fact both groups of order 6 = 6(2− 1) are maximal graph groups: the
symmetric group S3 and the cyclic group Z/6Z each act maximally on the genus
2 graph consisting of 2 vertices connected by 3 edges.

e1

e2

e3

Figure 3. A generator of the cyclic group Z/6Z acts
by interchanging the two vertices while cyclically permut-
ing the three edges. The symmetric group S3 =〈
τ, σ | τ2 = σ3 = 1, στ = τσ−1

〉
acts as follows: σ cyclically per-

mutes the three edges, and τ interchanges the two vertices, flipping
e1 while interchanging e2 and e3.

2.2. Harmonic Galois Theory. In [12], we constructed a harmonic Galois theory
for finite graphs with the goal of answering the following general question: if we fix
a connected base graph X, how can we classify the connected harmonic G-covers
φ : Y → X? By a harmonic G-cover φ : Y → X, we mean a harmonic group action
(G, Y ) together with an isomorphism φ : G\Y →̃X. Composing the isomorphism φ
with the quotient morphism φG then yields a harmonic morphism φ := φ◦φG from
Y to X. In order to explain the classification, we need to introduce the following
definitions, which are motivated by the Galois theory of algebraic curves defined
over non-algebraically closed fields.

Definition 2.6. Suppose that φ : Y → X is a harmonic G-cover of X, and
y ∈ V (Y ) has image x := φ(y). The decomposition group ∆y ≤ G at y is
the stabilizer of the connected component of the fiber Yx := φ−1(x) contain-
ing y. The inertia group Iy at y is the stabilizer subgroup of y in G. Note
that Iy ≤ ∆y, and the decomposition / inertia groups form conjugacy classes
in G as y varies over the fiber Yx. We say that φ is horizontally unramified or
étale at y if Iy = {ε}, and the cover ϕ is étale if it is étale at all y ∈ V (Y ).
The horizontal ramification index at y is my := |Iy|, and the inertia degree at y
is fy := #{vertices in the connected component of Yx containing y}. Finally, the
vertical multiplicity at y is vy := #{φ-vertical edges incident to y}. Since all edges
of the fiber Yx are φ-vertical, vy is the degree of the vertex y in the graph Yx. Since
by Proposition 2.5 the inertia group Iy acts freely on the edges incident to y, we see
that the vertical multiplicity satisfies vy = mywy for some wy ≥ 0. Note that the
numbers my, fy, vy, and wy are independent of the vertex y, and only depend on
the image vertex x = φ(y). The branch locus of φ is the set of vertices B ⊂ V (X)
for which the corresponding fibers have either m > 1 or v > 0.
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As evidence that these definitions are good analogues of their algebro-geometric
/ number-theoretic counterparts, we prove the following graph-theoretic version of
the Fundamental Identity for primes in Galois extensions of global fields (see e.g.
[18] Prop. 8.2).

Proposition 2.7. Suppose that φ : Y → X is a harmonic G-cover, and y ∈ V (Y )
with x := φ(y). Let n be the number of connected components of the fiber Yx, and
m, f be the ramification index and inertia degree at points of the fiber respectively.
Then deg(φ) = mfn.

Proof. We have the equalities deg(φ) = |G| = |G/∆y||∆y/Iy||Iy|. Since G acts
transitively on the set of connected components of Yx, the orbit stabilizer theorem
yields n = |G/∆y|. Similarly, since ∆y acts transitively on the vertices of the con-
nected component of Yx containing y, we see that f = fy = |∆y/Iy|. Putting these
observations together with the definition m = my := |Iy| yields the Fundamental
Identity. �

This Fundamental Identity for graphs provides further justification for our proposal
in section 2 of [12] to interpret φ-vertical edges not as “vertical ramification” as in
[4], but rather as the graph-theoretic analogue of an extension of residue fields.

An important tool for our study of maximal graph groups is the graph-analogue
of the Riemann-Hurwitz formula established in [4], which we state here in the
special case of harmonic G-covers as reformulated in section 2 of [11]:

Proposition 2.8 ([4] Theorem 2.14). Suppose that φ : Y → X is a connected
harmonic G-cover. Then

2g(Y )− 2 = |G|(2g(X)− 2−R),

where the ramification number R :=
∑
x∈V (X)[2(1 − 1

mx
) + wx]. Here mx := my

and wx := wy =
vy
my

for any choice of y ∈ V (Yx).

In section 5 of [11], we used the graph-theoretic Riemann-Hurwitz formula to show
that if (G, Y ) is a maximal harmonic G-action, then the quotient G\Y is a tree, and
the ramification number for the quotient morphism Y → G\Y is R = 7

3 . Moreover,

an earlier proposition from [11] shows that R = 7
3 can only occur in three ways:

Proposition 2.9 ([11] Prop. 3.3 and section 5). Suppose that φ : Y → X is a
connected harmonic G-cover. Then φ is maximal (|G| = 6(g(Y ) − 1)) if and only
if X is a tree and the ramification number for φ is R = 7

3 . In this case, there are
exactly three possibilities for the branch locus B ⊂ V (X), up to a reordering of the
branch points:

(i) a single branch point with m = 3, w = 1;
(ii) two branch points with ramification vector (m1,m2;w1, w2) = (3, 2; 0, 0);

(iii) two branch points with ramification vector (m1,m2;w1, w2) = (3, 1; 0, 1).

In section 3 of [12], we showed that étale G-covers of X are classified by a
certain group (called the étale fundamental group of X) which is isomorphic to the
free profinite completion of the free group on countably many generators. In section
4 of loc. cit. we gave a more concrete description of this result. Since we will only
need to use this description in the case where X is a tree, we content ourselves with
describing that case here: to give an unflipped étale G-cover of a tree X, we just
need to specify, for each vertex of X, a finite, symmetric, and unordered multi-set
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of non-trivial elements of G. By a multi-set, we mean that the elements of G may
appear with multiplicity, and by symmetric we mean that if the element ρ appears,
then ρ−1 also appears with the same multiplicity. If S is such a multi-set, we
may construct the Cayley graph Cay(G,S) with vertex set G as follows (see [12],
Example 2.8): for each vertex g ∈ G and for each ρ ∈ S, there is an edge from g to
gρ. Furthermore, if ρ 6= ρ−1, then the ρ-edge from g to gρ is identified with the ρ−1-
edge from gρ to g = gρρ−1. Edges coming from involutions in S are not identified
in this fashion. Inverse-pairs of group elements appearing with multiplicity in S
yield multiple edges of Cay(G,S). The resulting Cayley graph supports a natural
unflipped harmonic G-action given by left-multiplication on the vertex labels in
G. We associate to each vertex of X the Cayley graph constructed from the given
multi-set; these form the fibers of the corresponding unflipped étale G-cover, and
they are glued together according to the tree X. The union of the multi-sets must
generate the group G in order for the resulting G-cover to be connected.

We illustrate this construction for the symmetric group G = S3 and X the
graph consisting of two vertices x1 and x2 connected by a single edge e. We have
the presentation

S3 =
〈
τ, σ | τ2 = σ3 = 1, στ = τσ−1

〉
.

Choose S1 = {σ, σ−1} and S2 = {τ} for the symmetric multi-sets corresponding
to x1 and x2 respectively. Their union generates S3, so the corresponding étale
G-cover Y ét will be connected. The fiber Y ét

xi
over the vertex xi is given by the

(disconnected) Cayley graph Cay(S3, Si), and vertices labeled by the same group
element in the two fibers are connected by an edge lying over e. The group S3

acts harmonically on Y ét via left-multiplication on the group elements labeling the
vertices.

τ

στ

σ2τ

ε

σ

σ2

τ

στ

σ2τ

ε

σ

σ2

Y ét

φS3

x1 x2X e

Figure 4. The unflipped étale S3-cover of X corresponding to
the symmetric multi-sets S1 = {σ, σ−1} and S2 = {τ}.

The harmonic S3-cover constructed above has no flipped edges. But the pairs of
vertical edges corresponding to τ in the fiber Y ét

x2
may each be identified to a single

flipped edge, thereby obtaining a harmonic S3-cover Y
ét → X whose unflipped

model is Y ét (see Figure 5 and [12] section 2).
To allow for horizontal ramification, we introduced in [12] the notion of a G-

inertia structure on the base X, which is simply a collection of subgroups indexed



8 SCOTT CORRY

τ

στ

σ2τ

ε

σ

σ2

τ

στ

σ2τ

ε

σ

σ2

Y
ét

φS3

x1 x2X e

Figure 5. The étale S3-cover of X with flipped edges correspond-
ing to the symmetric multi-sets S1 = {σ, σ−1} and S2 = {τ}.

by the vertices of X. If I = {Ix ≤ G | x ∈ V (X)} is such a G-inertia structure
on X, then there is a functor FI from the category of étale G-covers of X to the
category of harmonic G-covers of X with inertia groups given by the conjugacy
classes C(I) := {c(Ix) | x ∈ V (X)}. The functor acts on each fiber by collapsing
the vertex set G of the Cayley graph over x onto the set of left cosets G/Ix, removing
any loop edges that are produced. In Proposition 5.2 of [12], we prove that every
harmonicG-cover ofX with inertia given by C(I) arises via this construction. Thus,
every harmonic G-cover of X can be described by specifying a G-inertia structure
on X, together with a finite, symmetric, unordered multi-set of non-trivial elements
of G for each vertex of X. The cover will be connected exactly when G is generated
by the union of the inertia groups and the multi-sets.

Returning to our S3-example, choose the inertia structure I = {I1, I2} with

I1 = 〈σ〉 and I2 trivial. Then applying the functor FI to the S3-cover Y
ét → X has

the following effect: the fiber Y
ét

x2
is unchanged, while the fiber Y

ét

x1
= Cay(S3, S1)

is altered by collapsing the vertices onto the two left-cosets of I1 in S3 and removing
the loop-edges that result (see Figure 6).

3. Proof of Theorem 1.1

In this section, we use the results of section 2.2 to prove

Theorem 1.1. A finite group G is a maximal graph group if and only if |G| ≥ 6 and
G is a quotient of the modular group Γ with presentation Γ =

〈
x, y | x2 = y3 = 1

〉
.

Proof. (⇐=) Suppose that |G| ≥ 6 and π : Γ → G is a surjection. Set τ :=
π(x), σ := π(y), so that τ has order 2 and σ has order 3 in G. Let X = ? be the
point graph. In order to construct a harmonic G-cover of X, we just need to specify
a symmetric multi-set S together with an inertia group I < G. For this, we take
S = {τ} and I = 〈σ〉, and define Y := FI(Cay(G,S)). Then Y → X is a harmonic
G-cover of X, with inertia groups given by the conjugacy class of I in G. Moreover,
Y is connected since G is generated by I ∪S. By construction, this is an unflipped
action, but each pair of edges corresponding to τ may be replaced by a single flipped
edge to obtain a connected harmonic G-cover Y → X. Moreover, since |I| = 3,
every point of Y has inertia group of order 3 and is incident to 3 vertical edges.
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τ 〈σ〉

〈σ〉

τ

στ

σ2τ

ε

σ

σ2

FI(Y
ét

)

φS3

x1 x2X e

Figure 6. The harmonic S3-cover of X with flipped edges cor-
responding to the symmetric multi-sets S1 = {σ, σ−1}, S2 = {τ},
and S3-inertia structure I1 = 〈σ〉 , I2 = {ε}.

That is, the ramification of Y → X corresponds to case (i) of Proposition 2.9 –
a single branch point ? with m = 3 and w = 1. It follows that the ramification
number R = 7

3 , so that |G| = 6(g(Y )− 1), and G is a maximal graph group.
(=⇒) Now suppose that G is a maximal graph group, so there exists a connected

harmonic G-cover Y → X where the genus of Y satisfies |G| = 6(g(Y ) − 1) ≥ 6.
Moreover, from [11] we know that X is a tree, and one of the three branch loci
described in Proposition 2.9 occurs. We first consider case (i) of a single branch
point with m = 3 and w = 1.

From the construction in [12], we may assume that X = ? is the point graph,
since the part of the tree outside of the single branch point is inessential in this
case. Thus, the cover Y → X is totally degenerate, and its unflipped model Y
may be obtained as FI(Cay(G,S)) for some inertia group I < G and symmetric
multi-set S of elements from G. Fix such a choice of I and S, where we may
assume that I ∩ S = ∅. (This is because any edge of the Cayley graph coming
from the intersection will be removed as a loop edge when we apply FI .) Since
m = 3, we must have I ∼= Z/3Z; choose a generator σ for this inertia subgroup.
The condition w = 1 means that each vertex of Y is incident to m = 3 vertical
edges, and since the G-action is totally degenerate, we see that Y is in fact 3-
regular. This is only possible if every edge of Y is flipped, having been obtained
from a pair of edges in the unflipped model Y . Indeed, since Cay(G,S) has degree
at least 2, and the functor FI identifies 3 vertices in Cay(G,S) to a single vertex
in Y , we see that Y = FI(Cay(G,S)) has degree at least 6 (here we use the fact
that I ∩ S = ∅). Hence, Cay(G,S) must be 2-regular, with the property that
the edges of FI(Cay(G,S)) may be identified in pairs to produce Y . This leads
to two possibilities for the multi-set S: either S = {τ} where τ has order 2, or
S = {ρ, ρ−1} where ρ ∈ τI for some element τ of order 2. The second option
requires some explanation: if the element ρ is to yield a flipped edge of Y , then it
must connect two vertices that are interchanged by an element τ ∈ G of order 2.
The vertices of Y are labeled by the left cosets of I, so the edge corresponding to ρ
must connect I and τI. But the element ρ yields an edge of Y connecting I to ρI,
so it follows that ρI = τI, which is equivalent to the stated condition ρ ∈ τI.
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Since Y is connected, we see that G is generated by I ∪ S. In both of the cases
described above, this implies that G is generated by τ and σ. Hence, we may define
a surjection π : Γ→ G by π(x) = τ and π(y) = σ, showing that G is a quotient of
Γ as required.

Now assume that we are in case (ii) or (iii) of Proposition 2.9: two branch points
x1 and x2 with ramification vector (m1,m2;w1, w2) = (3, 2; 0, 0) or (3, 1; 0, 1). Let
P be the unique path between x1 and x2 in the treeX. Then as a first simplification,
we may assume that X = P , since the part of the tree outside of P plays no essential
role in the constructions from [12]. Going further, we may assume that X is a single
edge connecting x1 to x2, since any additional vertices may be removed (along with
their pre-images in Y ) without affecting the analysis. Thus, the G-cover Y → X
has an unflipped model Y that corresponds to a pair of symmetric multisets S1, S2

and an inertia structure I = {I1, I2}.
In case (ii) the ramification vector is (3, 2; 0, 0), so we must have I1 ∼= Z/3Z and

I2 ∼= Z/2Z; choose generators σ, τ of I1 and I2 respectively, so that σ has order 3
and τ has order 2 in G. In this case the G-cover Y → X has no vertical edges, so
we may take S1 = S2 = ∅, which implies (since Y is connected) that G is generated
by I1 ∪ I2, hence by the generators σ and τ . Defining π : Γ→ G by π(x) = τ and
π(y) = σ realizes G as a quotient of Γ as required.

Finally, we consider case (iii) with ramification vector (m1,m2;w1, w2) = (3, 1; 0, 1).
Then I1 ∼= Z/3Z, but I2 is trivial. As before, choose a generator σ of I1, which
has order 3 in G. Since the fiber over x1 contains no vertical edges, we may take
S1 = ∅. The points of the fiber Y x2

have vertical multiplicity v2 = m2w2 = 1,
which implies that the unflipped model Yx2

= Cay(G, {τ}) for some τ ∈ G of order
2. Since Y is connected, it follows that G is generated by I1 ∪ {τ}, hence by σ and
τ . As in the previous cases, we see that G is a quotient of Γ. This final case is
illustrated for G = S3 in Figure 6. �

Lawrence University undergraduate Gus Black used Theorem 1.1 to determine
the maximal graph groups that arise in low genus:

Genus g 6(g − 1) Maximal graph groups for genus g

2 6 Z/6Z,S3

3 12 A4

4 18 S3 × Z/3Z
5 24 S4,A4 × Z/2Z
6 30 none
Table 1. Maximal graph groups for low genus

In particular, g = 6 is the first genus for which no maximal graph exists, improving
the result established in Proposition 9.2 of [11] that there is no maximal graph of
genus 12.

Of course, the modular group Γ ∼= PSL2(Z) has been studied intensively due to
its central role in number theory and geometry, and much is known about its finite
quotients. For instance, a 1901 result of G.A. Miller [17] says that all alternating
and symmetric groups are quotients of Γ except for A6,A7,A8 and S5,S6,S8.
Hence, by Theorem 1.1, all alternating and symmetric groups of size at least 6 are
maximal graph groups, except for Miller’s exceptions. In [14], Liebeck and Shalov
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Figure 7. The marked ideal triangle T

prove that all but finitely many of the finite simple classical groups different from
PSp4(2k) and PSp4(3k) are quotients of Γ.

4. Connection with Hurwitz surfaces

In [5], Brooks and Makover describe a construction that produces a compact
Riemann surface from a 3-regular oriented graph. We briefly summarize their
construction here.

Definition 4.1. An orientation O on a 3-regular graph X is the assignment to
each vertex x ∈ V (X) of a cyclic ordering of the edges incident to x. The pair
(X,O) is an oriented 3-regular graph.

Let T denote the ideal hyperbolic triangle in the upper half-plane with vertices

0, 1, and ∞. Mark the point c := 1+i
√

3
2 inside T , and then draw geodesics from c

to the “midpoints” i, i+ 1, and i+1
2 of the three sides of T . Hence, we have drawn

the half-neighborhood of a vertex in a 3-regular graph on the triangle T . We orient
T in the usual clockwise fashion coming from the upper half-plane – this induces
the cyclic orientation of the geodesic segments (i, i+ 1, i+1

2 ).
Starting with an oriented 3-regular graph (X,O), we place one copy of T at each

vertex of X, in such a way that the cyclic orientation at c matches the orientation
given by O. Each edge of X now connects two copies of T , and we glue these two
copies along the corresponding sides by identifying the “midpoints” and matching
orientations of the triangles. This procedure results in a complete finite area Rie-
mann surface SO(X,O), with cusps corresponding to the vertices of the triangles
T . Finally, let S(X,O) denote the conformal compactification of SO(X,O).

Definition 4.2. A left-hand-turn path in (X,O) is a closed path in X with the
property that at each vertex, the path turns left according to the orientation O.
More precisely: a closed path P = e1e2 · · · en is a left-hand-turn path if for all i, the
directed edge ei+1 follows the directed edge ei according to the orientation O (here
the index i is taken mod n). The path P is minimal if it is not the iteration of a
shorter left-hand-turn path. Note that if two minimal left-hand-turn paths share a
directed edge, then they are identical.

Proposition 4.3 (see [5] section 4). Let (X,O) be a 3-regular oriented graph. Then
the genus of the corresponding compact Riemann surface S(X,O) is given by the
formula

g(S(X,O)) = 1 +
|V (X)| − 2L

4
,

where L is the number of distinct minimal left-hand-turn paths in (X,O).
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Now suppose that G is a maximal graph group. Then by Theorem 1.1, there
exists a surjection π : Γ → G. Fix such a surjection π by choosing generators
τ, σ for G of orders 2 and 3 respectively. From the proof of Theorem 1.1, there
exists a maximal harmonic G-cover Y → ? with ramification numbers m = 3 and
w = 1. The corresponding unflipped model Y is given by FI(Cay(G, {τ})), where
I = 〈σ〉. In particular, Y is 3-regular, with vertices labeled by the left cosets of
I in G. Moreover, the generator σ cyclically permutes the three edges incident to
I, and hence determines a cyclic ordering at the vertex I. The inertia group at a
vertex γI is the conjugate subgroup γIγ−1, with conjugate generator γσγ−1 that
defines a cyclic ordering of the edges incident to γI. Thus, we see that the choice
of a surjection π determines a 3-regular oriented graph (Y ,Oπ) on which G acts
maximally. Moreover, the G-action preserves the orientation Oπ. Indeed, pick an
edge e incident to I, so that the cyclic order at I is (e, σe, σ2e). Then an element
γ ∈ G sends this triple of edges to the set of edges incident to γI in the order

(γe, γσe, γσ2e) = (γe, (γσγ−1)γe, (γσγ−1)2γe)

which matches the orientation at γI. By Proposition 1.7.1 of [16], orientation-
preserving automorphisms of an oriented 3-regular graph induce holomorphic au-
tomorphisms of the corresponding compact Riemann surface. Hence, from the
preceding discussion we see that the harmonic G-action on Y yields a (faithful)
holomorphic G-action on S(Y ,Oπ).

Theorem 4.4. Suppose that G is a maximal graph group, and fix a surjection
π : Γ → G by choosing generators τ, σ for G of orders 2 and 3 respectively. Let
(Y ,Oπ) be the corresponding 3-regular oriented graph, on which G acts maximally.
Then we have the following relationship between the order of G, the order of the
element τσ in G, and the genus of the compact Riemann surface S(Y ,Oπ):

|G| (|τσ| − 6) = 12|τσ|(g(S(Y ,Oπ))− 1).

In particular, if G is a Hurwitz group (so |τσ| = 7), this becomes

|G| = 84(g(S(Y ,Oπ))− 1),

so that S(Y ,Oπ) is a Hurwitz surface.

Proof. By Proposition 4.3, the genus of S(Y ,Oπ) is given by the following formula,
where L is the number of distinct minimal left-hand-turn paths in the oriented
graph (Y ,Oπ):

g(S(Y ,Oπ)) = 1 +
|V (Y )| − 2L

4

= 1 +
g(Y )− 1− L

2
since |V (Y )| = |G/I| = |G|

3
= 2g(Y )− 2.

A bit of rearrangement yields

(4.1) |G| = 6(g(Y )− 1) = 6L+ 12(g(S(Y ,Oπ))− 1).

The group G acts on the set of minimal left-hand-turn paths in Y . In fact,
since each directed edge determines a unique minimal left-hand-turn path, and G
acts transitively on the set of directed edges, the G-action on the set of minimal
left-hand-turn paths is also transitive. Hence, to determine the number L, we just
need to compute the order of the stabilizer of a minimal left-hand-turn path. For
this, let e be the edge connecting I to τI in Y , and direct it toward τI. The
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orientation at I is given by the cyclic ordering (e, σe, σ2e), while the orientation at
τI is given by (τe, τσe, τσ2e) = (e, τσe, τσ2e), since e is flipped by τ . Thus, a left
turn at τI after traveling along e leads to the edge τσe. It follows that τσ sends
the minimal left-hand-turn path P determined by the directed edge e to itself, so
〈τσ〉 is contained in the stabilizer subgroup of P . Moreover, since τσ shifts the
directed edge e onto its successor in P , it follows that the orbit of e under 〈τσ〉
contains every directed edge in P . But this implies that 〈τσ〉 is the full stabilizer
subgroup of P , since otherwise some element of G would fix the directed edge e,
contradicting Proposition 2.5. By the Orbit-Stabilizer Theorem, it follows that the

number of minimal left-hand-turn paths in (Y ,Oπ) is L = |G|
|τσ| . Putting this into

(4.1) and rearranging yields the desired relation:

|G|(|τσ| − 6) = 12|τσ|(g(S(Y ))− 1).

�
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