
Series Comparisons

Simple series comparisons1

The next theorems demonstrate how to use known series to learn things about closely
related examples.

Theorem If ∑
n = 0

∞

an converges and 0 ≤ bn ≤ an for all n , then ∑
n = 0

∞

bn converges, too.

Theorem If ∑
n = 0

∞

an diverges and bn ≥ an ≥ 0 for all n , then ∑
n = 0

∞

bn diverges, too.

Example Consider the series

∑
n = 1

∞
1

n 2n

We can understand this series by making a comparison with the known, convergent
geometric series

∑
n = 1

∞
1
2n

= ∑
n = 1

∞

rn = 1
1 - r

= 1
1 - 1/2

= 2

Because

0 < 1
n 2n

< 1
2n

for all n , we see that the series converges, and we even get a crude estimate for its value.

0 < ∑
n = 1

∞
1

n 2n
< 2

In order to apply this method, we need to have a list of “known” series to use as the basis
for our comparisons. These are the things that we know:

∑
n = 1

∞

rn = 1
1 - r

for r < 1
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∑
n = 1

∞
1
n

diverges

∑
n = 1

∞
1
n2

converges

∑
n = 1

∞
1
np

=
£©©•©©§

converges
diverges

p > 1
p ≤ 1

In other cases, you can use the integral comparison test to understand some “simple”
series, and then use series comparison from there to tell you things.

An example to motivate further developments2

Next we are going to see an example which demonstrates that although the comparison
test is powerful, it is often difficult to apply.

Consider the series

∑
n = 1

∞
n + 1

(n + 2) n

The first thing you should notice about this series is that it strongly resembles the
harmonic series

∑
n = 1

∞
1
n

which we know to diverge. That part is easy. The difficulty comes when you notice that
the most simple and obvious comparison you can write down is not at all useful.

∑
n = 1

∞
n + 1

(n + 2) n
< ∑

n = 1

∞
1
n

= ∞

Saying that a series is less than a series which is known to diverge is not useful
information. It tells us nothing about the series in question. The way out of this impasse
is to concoct a trickier comparison which does tell us something useful. Consider the
comparison

1
2

∑
n = 1

∞
1
n

< ∑
n = 1

∞
n + 1

(n + 2) n
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The comparison is based on the observation that

1
2

< n + 1
n + 2

for all n ≥ 1. The comparison is a useful one, because 1/2 times the harmonic series
diverges just as surely as the harmonic series.

∞ = 1
2

∑
n = 1

∞
1
n

< ∑
n = 1

∞
n + 1

(n + 2) n

Thus we see that the original series diverges.

This example demonstrates that although the comparison test is useful, it often requires
inordinate cleverness to apply correctly.

A simpler method based on comparison3

Next we are going to develop a technique based on the comparison method, but which
does not require nearly as much cleverness. I am going to make an effort to manufacture
this method from first principles. This is a valuable exercise, in that it should give you
some valuable insight into the workings of this method and other methods which are
coming down the line.

We begin the discussion with a vague but useful

Basic idea If a series ‘looks like’ something that converges or diverges, the series must also
converge or diverge, respectively.

The most obvious question that this statement raises is “What does it mean for one series
to ‘look like’ another?” Here is one possible way to express this concretely. Saying

∑
n = 1

∞

an looks like ∑
n = 1

∞

bn

basically means

an looks like bn

or

bn - an is about 0

More concretely, you can state this in terms of a limit.

3



lim
nœ∞

bn - an = 0

To make this more concrete, suppose that we have two series ∑
n = 1

∞

an and ∑
n = 1

∞

bn and we

know the second series converges and further

lim
nœ∞

bn - an = 0

Can we conclude that the first series converges, too? Is this vague idea good enough to
make a theorem?

Unfortunately, the answer is no. If you think about it for a while, you can probably come
up with an example like the following. Consider the series

∑
n = 1

∞
1
n2

which is known to converge. Now consider the second series

∑
n = 1

∞
1
n

Note that

lim
nœ∞

bn - an = lim
nœ∞

1
n2

- 1
n

= 0

The supposed theorem would have us conclude that the second series converges. This is
clearly not the case, so our claim is not true.

Can we salvage anything from this failure? Is there another way to express the notion
that one series ‘looks like’ another series? Here is one other way

lim
nœ∞

an

bn
= 1

The idea is that two series ‘look like’ each other if the ratio of their terms approaches 1 as
n gets large.

To make this more concrete, suppose that we have two series ∑
n = 1

∞

an and ∑
n = 1

∞

bn and we

know the second series converges and further
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lim
nœ∞

an

bn
= 1

Is it a theorem that the first series must also converge? Again, we might try this with an
example first.

∑
n = 1

∞
n + 1

(n + 2) n2
compared to ∑

n = 1

∞
1
n2

lim
nœ∞

n + 1

(n + 2) n2

1
n2

= lim
nœ∞

n + 1
n + 2

= 1

The theorem would have us believe that the first series converges. This is actually the
case, as you can see via the comparison

∑
n = 1

∞
n + 1

(n + 2) n2
< ∑

n = 1

∞
1
n2

Can we actually prove that this stuff really works?

The limit comparison theorem4

Theorem (limit comparison test) If the series ∑
n = 1

∞

bn converges and

lim
nœ∞

an

bn
= k (1)

then the series ∑
n = 1

∞

an converges, too.

Proof (based on the comparison test) We are going to try to show that given the limit (1)
we can get

∑
n = 1

∞

an < (something else) ∑
n = 1

∞

bn

and that the series on the right converges

What is the fudge factor that I need in order to get that comparison to go? How do I get
from the only other thing that I know,
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What is the fudge factor that I need in order to get that comparison to go? How do I get
from the only other thing that I know,

lim
nœ∞

an

bn
= k

Here is how you make that happen.

lim
nœ∞

an

bn
= k

says to you that as soon as n gets big enough, the ratio gets ‘arbitrarily close’ to k . The
way to express that concretely is to say that given some factor ∂ which is very small, there
is an N such that for all n > N we have

k - ∂ < an

bn
< k + ∂

The following steps demonstrate how that inequality can help us.

∑
n = 1

∞

an = ∑
n = 1

N

an + ∑
n = N + 1

∞

an = ∑
n = 1

N

an + ∑
n = N + 1

∞

bn
an

bn

< ∑
n = 1

N

an + ∑
n = N + 1

∞

bn
an

bn

< ∑
n = 1

N

an + ∑
n = N + 1

∞

bn (k + ∂)

< ∑
n = 1

N

an + (k + ∂) ∑
n = N + 1

∞

bn

Since the bn series converges, everything in the last line converges. We have thus shown
that the original series converges, because we have trapped it underneath some terms
which are known to be finite. Thus the theorem is proved.

There is a similar version of this theorem for divergent series. I leave it to you to look up
the statement of that theorem in the text.

Let's bring back the original example now
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∑
n = 1

∞
n + 1

(n + 2) n
(2)

Compare this to

∑
n = 1

∞
1
n

via the limit

lim
nœ∞

n + 1
(n + 2) n

1/n
= 1

Since the limit is 1, the divergent version of the theorem shows that the series (2)
diverges. Note that we accomplished this without any of the cleverness needed to apply
the raw comparison test.
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