
Series with positive and negative terms

Alternating Series1

An alternating series is a series in which the signs on the terms being added alternate
between + and -. Here is perhaps the most famous alternating series

∑
n = 1

∞ (-1)
n

n

This series actually converges. Let us now show this. We have to start from first
principles by examining the partial sum.

SN = ∑
n = 1

N (-1)
n

n

What is lim
Nœ∞

SN? We can get a sense for what happens by making a table of partial

sums.
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N

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

SN

-1
-0.5

-0.83333333333333326
-0.58333333333333326
-0.78333333333333321
-0.6166666666666667
-0.7595238095238096
-0.63452380952380938
-0.74563492063492043
-0.64563492063492056
-0.7365440115440115
-0.65321067821067802
-0.73013375513375489
-0.65870518370518349
-0.72537185037185015
-0.66287185037185015
-0.72169537978361487
-0.66613982422805929
-0.71877140317542765
-0.66877140317542783

The table is not very illuminating, but if we plot the partial sums as a function of N,
something rather dramatic jumps out at you.
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To try to understand this picture, let us take a closer look at the nature of the partial
sum.

SN = ∑
n = 1

N (-1)
n

n

To start with, write down a typical partial sum for even N. Grouping the terms in that
partial sum in a particular way leads to an interesting observation.

S6 = “©©©‘-1 + 1
2

”™™™’ - “©©©‘
1
3

- 1
4

”™™™’ - “©©©‘
1
5

- 1
6

”™™™’ = -1
2

- (pos) - (pos)

This tells us that the sequence of even partial sums is a decreasing sequence which starts
at -1/2. This raises the question of whether that sequence of partial sums will decrease to
-∞ or if it will level out and have a limit. If we can somehow show that this sequence of
partial sums is bounded below, then we will have shown that the sequence converges.

Set aside that question for a moment and examine a typical partial sum with odd N.
Once again, an appropriate version of the grouping trick shows something interesting.
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S7 = -1 + “©©©‘
1
2

- 1
3

”™™™’ + “©©©‘
1
4

- 1
5

”™™™’ + “©©©‘
1
6

- 1
7

”™™™’

= -1 + (pos) + (pos) + (pos)

The odd partial sums form an increasing sequence of terms. The final question to answer
is “what is the relationship between the even partial sums and the odd partial sums?”

How does, for example, S7 compare to all of the even partial sums that come after it?

S2 k = S7 + ∑
n = 8

2k (-1)
n

n

∑
n = 8

2k (-1)
n

n
= “©©©‘

1
8

- 1
9

”™™™’ + “©©©‘
1
10

- 1
11

”™™™’ + … + 1
2 k

> 0

S2 k = S7 + pos

S2 k > S7

What we have now is that the sequence of even partial sums is a strictly decreasing
sequence which is bounded below, and therefore must converge.

By similar reasoning, the story with the odd partial sums is that they are strictly
increasing and bounded above. Hence, they must converge.

There is just one question left to resolve, and here the picture is not much help. We have
established that separately the even partial sums and the odd partial sums both form
convergent sequences. The only thing left to prove is that these two limits are in fact the
same limit. We can do that pretty easily by examining the difference between the even
and odd partial sums in the limit.

lim
kœ∞

S2 k - S2 k+1 = lim
kœ∞

-(-1)
2 k+1

(2k + 1)
= lim

kœ∞

1
2 k + 1

= 0

This finally shows that

∑
n = 1

∞ (-1)
n

n

converges.

If you go back and take a close look at what we have just shown, you will see that the
entire proof hangs on one essential fact about (-1)

n
n/ : in absolute value each term is

smaller than the term that came before it. Therefore, if we have any series with exactly
alternating signs and strictly decreasing terms, we can apply exactly the same arguments
to it to show that the series converges.
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Theorem (Alternating series test) If the terms of the series ∑
n = 1

∞

(-1)
n

an have the

property that all of the an terms are positive and

an+1 < an

for all n , then the series converges.

Absolute Convergence2

Alternating series are very nice. To prove that an alternating series converges, we only
have to prove that the terms in the series decrease in absolute value as n increases. A
practical problem that sometimes occurs in practice is that you may have a series that has
both positive and negative terms in it but the positive and negative terms do not follow
the strict alternating pattern. An example of this kind is the series

∑
n = 1

∞ cos n

n2

This series has both positive and negative terms, but the terms don't form a strict
alternation. In cases like this, the only thing we can do is the following.

Definition A series

∑
n = 1

∞

an

is absolutely convergent if the series

∑
n = 1

∞

an

converges. A series is conditionally convergent if the series converges, but not absolutely.

The series

∑
n = 1

∞ cos n

n2
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is absolutely convergent because

∑
n = 1

∞ cos n

n2
< ∑

n = 1

∞
1
n2

and the latter series is known to converge.

6


