
Introduction to Sequences

A sequence an is a list of numbers indexed by some index n . Usually when we talk about
sequences we express them as a rule that tells us how to generate the n th sequence element
an from the index value n , starting from some n = n0 . Here are some concrete examples.

an = n + 1
n

; n ≥ 2

an = 1 + (-1)
n

2n
; n ≥ 0

an = n2 + 1

n3 + 1
; n ≥ 1

Once we know the rule for generating the n th sequence element, we can write out the first
few elements of the sequence. For example, the first few terms of the third example above
are

1, 5/9, 5/14, 17/65, 13/63, 37/217, …

Given just the sequence of terms written out like this it may be extremely difficult to
recover the rule that generated that sequence. Fortunately, in almost every case we will
encounter we will have that rule.

The limit of a sequence

The most fundamental question to ask about a sequence is whether or not it has a limit
as the index n gets large. To answer this question in an informal way, we could look at the
first few terms of the sequence and then make a conjecture about where the sequence is
going as the index grows. Here are the first ten terms of each of the three sequences
shown above.
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From examining the first few terms of a sequence we can sometimes make a conjecture
about what that sequence of terms is going to do in the limit as the index grows very
large. In each of the cases we are looking at here, we can make reasonable guesses about
what happens in the limit as n gets large.

lim
nœ∞

n + 1
n

= 1

lim
nœ∞

1 + (-1)
n

2n
= 0

lim
nœ∞

n2 + 1

n3 + 1
= 0

A formal definition

Since we are about to start generating theorems about the behavior of sequences, we have
to establish a definition for the limit of a sequence.

Definition We say that the sequence an converges to a limit L if, given any positive
number È there is a whole number N with the property that an - L < È for all n ≥ N.

Proving that a sequence converges directly from the definition is challenging. Here is a
simple example. One of our examples earlier was the sequence

an = n + 1
n

We conjectured that this sequence has a limit of 1 as n goes off to ∞. Here is how to go
about proving that from the definition:

Suppose that someone has given you a very small positive number È.•

You want to show that as n gets large enough, the difference between an
and L = 1 is smaller than È:

•

an - L = n + 1
n

- 1 < È
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(n + 1) - n
n

< È

1
n

< È

n > 1
È

The calculation shows that if we pick N to be the smallest integer larger
than 1/È, then n ≥ N implies that an - L < È . This demonstrates that
the sequence an converges and that its limit is 1.

•

Here is another very useful example. Let r be any positive number less than 1. The
sequence

an = rn

converges to 0 as n gets large:

an - L = rn - 0 < È

rn < È

n ln r < ln È

n > ln È
ln r

Some helpful theorems

Working with the definition and using the definition to prove that a particular sequence
converges quickly becomes very challenging as soon as you move beyond the most basic
examples. The most effective method to prove that a particular sequence has a limit is to
use one of the following three theorems.

Theorem One: Combinations of Sequences Let an and bn be convergent sequences with

lim
nœ∞

an = A and lim
nœ∞

bn = B ≠ 0

then
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lim
nœ∞

(an + bn) = lim
nœ∞

an + lim
nœ∞

bn = A + B

lim
nœ∞

(an - bn) = lim
nœ∞

an - lim
nœ∞

bn = A - B

lim
nœ∞

an bn = “©©©‘
lim

nœ∞
an”™™™’

“©©©‘
lim

nœ∞
bn”™™™’

= A B

lim
nœ∞

an

bn
=

lim
nœ∞

an

lim
nœ∞

bn
= A

B

The most common way we use this theorem will be to ‘break down’ sequences into simpler
component parts. Provided that we can ultimately show that those component parts
converge, the process is justified.

lim
nœ∞

(1/2)
n

+ (1/3)
n

4
=

lim
nœ∞

(1/2)
n

+ lim
nœ∞

(1/3)
n

4
=

lim
nœ∞

(1/2)
n

+
lim

nœ∞
(1/3)

n

lim
nœ∞

4
=

0 + 0
4

In the last step we used the fact that the sequence an = rn converges to 0 whenever r is
less than 1.

Theorem Two: Squeeze Theorem Let an and bn be convergent sequences with

lim
nœ∞

an = L and lim
nœ∞

bn = L

and suppose further that cn is a sequence and that for all n > n0 we have

an ≤ cn ≤ bn

then the sequence cn converges to L .
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We can use the squeeze theorem to prove that the sequence

an = 1 + (-1)
n

2n

converges to 0. It is easy to show that

0 ≤ 1 + (-1)
n

2n
≤ 2

2n
= 2 “©©©‘

1
2

”™™™’

n

Both the sequence consisting of all 0s and the sequence on the right converge to 0, so our
sequence is forced to converge to 0 along with them.

Theorem Three: Comparison Theorem Suppose f(x) is a function with the property
that

lim
xœ∞

f(x) = L

and that an = f(n). Then the sequence an converges to L .

This theorem provides an easy way to prove that the sequence

an = n2 + 1

n3 + 1

converges and has a limit of 0. Consider the function

f(x) = x2 + 1

x3 + 1

We can use L
·
Hospital's rule to compute the limit of f(x) as x goes to ∞:

lim
xœ∞

x2 + 1

x3 + 1
= lim

xœ∞
2 x
3 x2

= lim
xœ∞

2
3 x

= 0

Since an = f(n) for this particular function, we have a proof that the limit of an is 0 as n
goes to ∞.

Sequences that diverge to infinity

Another very common sort of behavior for sequences is to become very large as n becomes
large. Here are two examples.
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an = 2n

an = n3 + 1

n2 + 1

Here is a definition to go along with this idea.

Definition We say that a sequence an diverges to +∞ if given any positive number M
there is an N such that an > M whenever n > N.

Sequences that neither converge nor diverge

Some sequences have no limit. Here are a couple of examples.

an = 1 + (-1)
n

an = tan n
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