Trig substitutions

There are number of special forms that suggest a trig substitution. The most common
candidates for trig substitutions include the forms

\a® - z* which suggests = = a sin 6 (1)
\a® 4+ z* which suggests z = a tan 6 (2)
\z? - a* which suggests z = a sec 0 (3)

Here are some examples where these substitutions help.

In the first example we compute
1
f 1-z%dx
-1
This example has an interesting interpretation. What we are computing here is the area
of a semicircle of radius 1. We know in advance that the answer should be 7/2.
The recommended substitution in this case is
x = sin 6
dx = cos 6 df

Applying this substitution gives

f l—xzdac:fx/l—siHQG0089d92f00529d9

We can solve the cosine squared integral via the substitution

R cos(2 0).

2

fl + cos(2 0)

2040 =
fCOS 2

d0=Lo+ Lsin2e)+cC
2 4

The last step is to substitute back for # by using 8 = sin™ z:



1o+ Lsin@e)=Lsin 2+ Lsin@sin 2)+C
2 4 2 4

Substituting the endpoints and simplifying gives
1sm41+1sm@$ﬂlny[1ﬁﬂW4)+1smﬂﬁﬂlﬁwﬂzﬂ——”:W
2 4 2 4 4 2
This is the expected result.

A more difficult integral

The next example is

f\/1+x2dx

The suggested substitution is
x = tan
which leads to
dz=sec’ 0d0

Substituting these back into the integral gives

f\/l + tan® 0 sec® 0d6
= fxfsec2 u sec® 0db

= fse(:3 0do

You can solve this integral through a clever application of integration by parts. The trick
is to rewrite the integral as

f5603 Odu = fse(:2 0 sec 0d0
and integrate the sec? 0 term while differentiating the sec 6 term.

[ (sec 9)3d0 = sec ) tan 6 - [ sec 6 tan’ 0d6

We can evaluate the latter integral by a trig identity.



[sec o tan® 0d6 = [sec o (sec2 0-1)do
= f—sec 0 + (sec 9)3d0
Thus
[ (sec 0)3d9 =sec f tan 0 + [sec 0d6 - [ (sec 0)3d0

Rearranging slightly gives

2 [ (sec 0)3d0 = secf tan 6§ + [sec6df
Earlier we determined

fsecﬁd@ =In ‘secG +tan0‘ +C

Hence
f(sec 9)3d0 = % (sec @ tan 6 + In [sec 6 + tan 6| 4 C)
The last step is to substitute back in for z:

z = tan 6

6 = tan™' z

f\/1+x2d:1;:

Our last problem is figuring out how to simplify expressions like sec(tan'1 z). Instead of

% (sec(tan™ z) tan(tan™ z) + In ‘sec(tan_1 ) 4 tan(tan™ x)‘ +C)

substituting back for 6 we can try a different approach. Writing the answer in the form

%(SGCQ tan 6 + In [sec 6 + tan 6| 4 C)

we see that we have to compute sec 6 given that tan § = z. The key to handling
situations like this is to go back to the original substitution (z = tan ) and interpret it
as a statement about a right triangle with angle . We can construct a right triangle with
an angle whose tangent is z by making the side opposite the angle have length x and the
side adjacent to the angle have length 1. This forces the hypotenuse to have length

V1 —|—a:2.



1—|—ﬂv2

We can then read off from this diagram that

tan @ =z

sec =1 + 22

Thus

f\/l—I—xde:%(sec@tan@—kln‘sec@—ktan@‘ +C)=

;(:1: V1 + 2 +ln‘x/1 + 2’ —I—ili‘ +C]

Another triangle example

The substitutions suggested above really come in useful in integrals in which those square
root form appears in combination with other algebraic expressions. Consider this example.

f\4_2I2d517
T

The suggested substitution in this case is

r=2sin6
dx=2cosb db

Making this substitution converts the integral to



. 2 / . 2 2
f—4—4sm 92cos€d9:f2—1_sm 020080d9:fcos 9d0

4 sin® 6 4 sin® 0 sin’ 0

= [tan®0d6 = [sec’ 0 -1d6O = tan - 6 + C

Once again the problem at the end is to reverse the substitution. To do this, we can
replay the argument we used in the last example with a triangle constructed to ensure
that sin @ = z/2.

4 -z

We read off from this diagram that tan 6 = z/~/4 - z?:

2

f 4-21' dr = 24 —sin'l[g]—l—C
z 4-z?

Extra algebra work is sometimes needed

The next example shows that sometimes we will have to do some preliminary algebra and
a preliminary substitution before we can apply the trig substitution of our choice. Here is
the problem:

f 2 dz
\/2x2—|—3:1:—i—2

The form of the expression in the radical suggests that we should use the substitution
appropriate for 2 + a2, which is z = a tan 6. However, before we can apply that
substitution, we have to make the expression in the radical look more like the form 22 +
a’. The first thing to do is to eliminate the factor of 2 in front of the 2% term. We can do



this by factoring out a factor of 2 from underneath the radical.

f 2z dr = 1/ 2z dx
Vo2 43042 {2 \/x +3/2z+1

The next step is to get rid of the superfluous 3/2 z term in the radical expression. The
appropriate way to accomplish that is to complete the square in the polynomial.

224320 4+1=2>123/4) z+1=2>+23/4)z+ (3/4) - 3/4)° +1
— (z +3/4) +7/16

2
The next step is to introduce a substitution that turns the (z 4+ 3/4)" term into u?. The
appropriate substitution is

u=1c+3/4
r=u-3/4
dz =du

With this substitution the original integral becomes

Lo p2@=3/4) g o w u3ﬁf

12 u® +7/16 u® +7/16 Vu? + 7/16

Finally, we do the two integrals by two different methods. The first integral can be
handled by the substitution

w=u®~+7/16
dw=2udu

With this substitution the first integral becomes

JQEfw—l/’zdw _ [JQE] 2wy = J2\u? +7/16 =242 + 3¢ +2

The second integral requires the use of a trig substitution:

u:\thaHG



du = ‘]Z sec’ 0 do

This converts the second integral into

‘E sec’ 0

_3ﬁf 4 dH:—3\Ef sec” 6 dQ:—%EfseCGdQ

! \/7/16 tan’d + 7/16 P Jtan?e 11

:—?’ialnsece—i—tanH +C

Finally, we have to reverse the trig substitution. The original substitution

u:\}Ztane

can be written

W~

2U_— tan @
J7

Here is a triangle constructed to make that true.

\16 u? + 7

17

We can read off from that triangle that sec 8 = /16 w? + 7/( =+16/7 w1
\16/7 u® 41 + 42
J7

—37\Eln‘sec0—|—tan0‘ =—3%Eln
4 4 7




i\/2x2+3g;+2+4(L3/4)
17 17

A Ju? +7/16 + 44 =

=—Lﬁln
T 7
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