Trig substitutions

There are number of special forms that suggest a trig substitution. The most common candidates for trig substitutions include the forms

$$
\begin{align*}
& \sqrt{a^{2}-x^{2}} \text { which suggests } x=a \sin \theta \tag{1}\\
& \sqrt{a^{2}+x^{2}} \text { which suggests } x=a \tan \theta \tag{2}\\
& \sqrt{x^{2}-a^{2}} \text { which suggests } x=a \sec \theta \tag{3}
\end{align*}
$$

Here are some examples where these substitutions help.
In the first example we compute

$$
\int_{-1}^{1} \sqrt{1-x^{2}} d x
$$

This example has an interesting interpretation. What we are computing here is the area of a semicircle of radius 1 . We know in advance that the answer should be $\pi / 2$.

The recommended substitution in this case is

$$
\begin{gathered}
x=\sin \theta \\
d x=\cos \theta d \theta
\end{gathered}
$$

Applying this substitution gives

$$
\int \sqrt{1-x^{2}} d x=\int \sqrt{1-\sin ^{2} \theta} \cos \theta d \theta=\int \cos ^{2} \theta d \theta
$$

We can solve the cosine squared integral via the substitution

$$
\begin{gathered}
\cos ^{2} \theta=\frac{1+\cos (2 \theta)}{2} \\
\int \cos ^{2} \theta d \theta=\int \frac{1+\cos (2 \theta)}{2} d \theta=\frac{1}{2} \theta+\frac{1}{4} \sin (2 \theta)+C
\end{gathered}
$$

The last step is to substitute back for θ by using $\theta=\sin ^{-1} x$:

$$
\frac{1}{2} \theta+\frac{1}{4} \sin (2 \theta)=\frac{1}{2} \sin ^{-1} x+\frac{1}{4} \sin \left(2 \sin ^{-1} x\right)+C
$$

Substituting the endpoints and simplifying gives

$$
\left(\frac{1}{2} \sin ^{-1} 1+\frac{1}{4} \sin \left(2 \sin ^{-1} 1\right)\right)-\left(\frac{1}{2} \sin ^{-1}(-1)+\frac{1}{4} \sin \left(2 \sin ^{-1}(-1)\right)\right)=\frac{\pi}{4}-\left(-\frac{\pi}{4}\right)=\frac{\pi}{2}
$$

This is the expected result.

A more difficult integral

The next example is

$$
\int \sqrt{1+x^{2}} d x
$$

The suggested substitution is

$$
x=\tan \theta
$$

which leads to

$$
d x=\sec ^{2} \theta d \theta
$$

Substituting these back into the integral gives

$$
\begin{gathered}
\int \sqrt{1+\tan ^{2} \theta} \sec ^{2} \theta d \theta \\
=\int \sqrt{\sec ^{2} u} \sec ^{2} \theta d \theta \\
=\int \sec ^{3} \theta d \theta
\end{gathered}
$$

You can solve this integral through a clever application of integration by parts. The trick is to rewrite the integral as

$$
\int \sec ^{3} \theta d u=\int \sec ^{2} \theta \sec \theta d \theta
$$

and integrate the $\sec ^{2} \theta$ term while differentiating the sec θ term.

$$
\int(\sec \theta)^{3} d \theta=\sec \theta \tan \theta-\int \sec \theta \tan ^{2} \theta d \theta
$$

We can evaluate the latter integral by a trig identity.

$$
\begin{gathered}
\int \sec \theta \tan ^{2} \theta d \theta=\int \sec \theta\left(\sec ^{2} \theta-1\right) d \theta \\
=\int-\sec \theta+(\sec \theta)^{3} d \theta
\end{gathered}
$$

Thus

$$
\int(\sec \theta)^{3} d \theta=\sec \theta \tan \theta+\int \sec \theta d \theta-\int(\sec \theta)^{3} d \theta
$$

Rearranging slightly gives

$$
2 \int(\sec \theta)^{3} d \theta=\sec \theta \tan \theta+\int \sec \theta d \theta
$$

Earlier we determined

$$
\int \sec \theta d \theta=\ln |\sec \theta+\tan \theta|+C
$$

Hence

$$
\int(\sec \theta)^{3} d \theta=\frac{1}{2}(\sec \theta \tan \theta+\ln |\sec \theta+\tan \theta|+C)
$$

The last step is to substitute back in for x :

$$
\begin{gathered}
x=\tan \theta \\
\theta=\tan ^{-1} x \\
\int \sqrt{1+x^{2}} d x=\frac{1}{2}\left(\sec \left(\tan ^{-1} x\right) \tan \left(\tan ^{-1} x\right)+\ln \left|\sec \left(\tan ^{-1} x\right)+\tan \left(\tan ^{-1} x\right)\right|+C\right)
\end{gathered}
$$

Our last problem is figuring out how to simplify expressions like $\sec \left(\tan ^{-1} x\right)$. Instead of substituting back for θ we can try a different approach. Writing the answer in the form

$$
\frac{1}{2}(\sec \theta \tan \theta+\ln |\sec \theta+\tan \theta|+C)
$$

we see that we have to compute $\sec \theta$ given that $\tan \theta=x$. The key to handling situations like this is to go back to the original substitution $(x=\tan \theta)$ and interpret it as a statement about a right triangle with angle θ. We can construct a right triangle with an angle whose tangent is x by making the side opposite the angle have length x and the side adjacent to the angle have length 1 . This forces the hypotenuse to have length $\sqrt{1+x^{2}}$.

We can then read off from this diagram that

$$
\tan \theta=x
$$

$\sec \theta=\sqrt{1+x^{2}}$
Thus

$$
\begin{gathered}
\int \sqrt{1+x^{2}} d x=\frac{1}{2}(\sec \theta \tan \theta+\ln |\sec \theta+\tan \theta|+C)= \\
\frac{1}{2}\left(x \sqrt{1+x^{2}}+\ln \left|\sqrt{1+x^{2}}+x\right|+C\right)
\end{gathered}
$$

Another triangle example

The substitutions suggested above really come in useful in integrals in which those square root form appears in combination with other algebraic expressions. Consider this example.

$$
\int \frac{\sqrt{4-x^{2}}}{x^{2}} d x
$$

The suggested substitution in this case is

$$
\begin{gathered}
x=2 \sin \theta \\
d x=2 \cos \theta d \theta
\end{gathered}
$$

Making this substitution converts the integral to

$$
\begin{gathered}
\int \frac{\sqrt{4-4 \sin ^{2} \theta}}{4 \sin ^{2} \theta} 2 \cos \theta d \theta=\int \frac{2 \sqrt{1-\sin ^{2} \theta}}{4 \sin ^{2} \theta} 2 \cos \theta d \theta=\int \frac{\cos ^{2} \theta}{\sin ^{2} \theta} d \theta \\
=\int \tan ^{2} \theta d \theta=\int \sec ^{2} \theta-1 d \theta=\tan \theta-\theta+C
\end{gathered}
$$

Once again the problem at the end is to reverse the substitution. To do this, we can replay the argument we used in the last example with a triangle constructed to ensure that $\sin \theta=x / 2$.

We read off from this diagram that $\tan \theta=x / \sqrt{4-x^{2}}$:

$$
\int \frac{\sqrt{4-x^{2}}}{x^{2}} d x=\frac{x}{\sqrt{4-x^{2}}}-\sin ^{-1}\left(\frac{x}{2}\right)+C
$$

Extra algebra work is sometimes needed

The next example shows that sometimes we will have to do some preliminary algebra and a preliminary substitution before we can apply the trig substitution of our choice. Here is the problem:

$$
\int \frac{2 x}{\sqrt{2 x^{2}+3 x+2}} d x
$$

The form of the expression in the radical suggests that we should use the substitution appropriate for $x^{2}+a^{2}$, which is $x=a \tan \theta$. However, before we can apply that substitution, we have to make the expression in the radical look more like the form $x^{2}+$ a^{2}. The first thing to do is to eliminate the factor of 2 in front of the x^{2} term. We can do
this by factoring out a factor of 2 from underneath the radical.

$$
\int \frac{2 x}{\sqrt{2 x^{2}+3 x+2}} d x=\frac{1}{\sqrt{2}} \int \frac{2 x}{\sqrt{x^{2}+3 / 2 x+1}} d x
$$

The next step is to get rid of the superfluous $3 / 2 x$ term in the radical expression. The appropriate way to accomplish that is to complete the square in the polynomial.

$$
\begin{gathered}
x^{2}+3 / 2 x+1=x^{2}+2(3 / 4) x+1=x^{2}+2(3 / 4) x+(3 / 4)^{2}-(3 / 4)^{2}+1 \\
=(x+3 / 4)^{2}+7 / 16
\end{gathered}
$$

The next step is to introduce a substitution that turns the $(x+3 / 4)^{2}$ term into u^{2}. The appropriate substitution is

$$
\begin{gathered}
u=x+3 / 4 \\
x=u-3 / 4 \\
d x=d u
\end{gathered}
$$

With this substitution the original integral becomes

$$
\frac{1}{\sqrt{2}} \int \frac{2(u-3 / 4)}{\sqrt{u^{2}+7 / 16}} d x=\sqrt{2} \int \frac{u}{\sqrt{u^{2}+7 / 16}} d u-\frac{3 \sqrt{2}}{4} \int \frac{1}{\sqrt{u^{2}+7 / 16}} d u
$$

Finally, we do the two integrals by two different methods. The first integral can be handled by the substitution

$$
\begin{gathered}
w=u^{2}+7 / 16 \\
d w=2 u d u
\end{gathered}
$$

With this substitution the first integral becomes

$$
\frac{\sqrt{2}}{2} \int w^{-1 / 2} d w=\left(\frac{\sqrt{2}}{2}\right)\left(2 w^{1 / 2}\right)=\sqrt{2} \sqrt{u^{2}+7 / 16}=\sqrt{2 x^{2}+3 x+2}
$$

The second integral requires the use of a trig substitution:

$$
u=\frac{\sqrt{7}}{4} \tan \theta
$$

$$
d u=\frac{\sqrt{7}}{4} \sec ^{2} \theta d \theta
$$

This converts the second integral into

$$
\begin{gathered}
-\frac{3 \sqrt{2}}{4} \int \frac{\frac{\sqrt{7}}{4} \sec ^{2} \theta}{\sqrt{7 / 16 \tan ^{2} \theta+7 / 16}} d \theta=-\frac{3 \sqrt{2}}{4} \int \frac{\sec ^{2} \theta}{\sqrt{\tan ^{2} \theta+1}} d \theta=-\frac{3 \sqrt{2}}{4} \int \sec \theta d \theta \\
=-\frac{3 \sqrt{2}}{4} \ln |\sec \theta+\tan \theta|+C
\end{gathered}
$$

Finally, we have to reverse the trig substitution. The original substitution

$$
u=\frac{\sqrt{7}}{4} \tan \theta
$$

can be written

$$
\frac{4 u}{\sqrt{7}}=\tan \theta
$$

Here is a triangle constructed to make that true.

We can read off from that triangle that $\sec \theta=\sqrt{16 u^{2}+7} / \sqrt{7}=\sqrt{16 / 7 u^{2}+1}$

$$
-\frac{3 \sqrt{2}}{4} \ln |\sec \theta+\tan \theta|=-\frac{3 \sqrt{2}}{4} \ln \left|\sqrt{16 / 7 u^{2}+1}+\frac{4 u}{\sqrt{7}}\right|
$$

$=-\frac{3 \sqrt{2}}{4} \ln \left|\frac{4}{\sqrt{7}} \sqrt{u^{2}+7 / 16}+\frac{4 u}{\sqrt{7}}\right|=-\frac{3 \sqrt{2}}{4} \ln \left|\frac{4}{\sqrt{7}} \sqrt{2 x^{2}+3 x+2}+\frac{4(x+3 / 4)}{\sqrt{7}}\right|$

