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Differential Operators

Consider the differential operator

L(u(x)) = - T d
2

dx 2
(u(x))

acting on the space C2[0,l] of twice-continuously differentiable functions on the closed interval [0,l].
This operator is a linear operator, because

L(¨ u(x) + ‡ v(x)) = - T d
2

dx 2
(¨ u(x) + ‡ v(x)) = ¨ 

“©©©‘- T d
2

dx 2
(u(x))

”™™™’ + ‡
“©©©‘- T d

2

dx 2
(v(x))

”™™™’

We want to bring the methods of chapter 3 to bear on this operator to solve equations of the form

L(u(x)) = f(x)

Boundary Conditions

One problem with the operator as described above is that it does not have a trivial null space. The

null space of this operator is the set of all functions that satisfy

L(u(x)) = - T d
2

dx 2
(u(x)) = 0

It is easy to see that any function of the form

u(x) = a x + b

satisfies this equation, giving the operator L a non-trivial null space. This in turn makes the

solutions to the differential equation non-unique.

The usual fix for this problem is to impose extra conditions on the equation. If we require that

solutions to

- T d
2

dx 2
(u(x)) = 0

also satisfy the Dirichlet boundary conditions

u(0) = u(l) = 0

then the only function in the null space will be the function

u(x) = 0

Another way to look at this is to say that we have restricted the original operator to act on a

subspace CD
2[0,1] of C2[0,l], called the Dirichlet subspace. This subspace consists of all twice



2

CD [0,1] C [0,l] Dirichlet subspace
continuously differentiable functions on [0,l] that vanish at the boundary.

Symmetry

The space of functions that we are operating on, CD
2[0,1], is also an inner product space. On this

space we use the inner product

(u,v) = ½ l
0u(x)v(x) d x

The operator L is a symmetric operator on this space:

(L u , v ) = ½ l
0

“©©©‘- T d
2

dx 2
(u(x))

”™™™’v(x) d x = v(x) 
“©©©‘-T

d
dx

u(x)
”™™™’|0

l + ½ l
0

“©©©‘T
d
dx

u(x)
”™™™’

“©©©‘
d
dx

v(x)
”™™™’ d x

= 0 + T u(x) 
“©©©‘
d
dx

v(x)
”™™™’|0

l - ½ l
0T u(x)

“©©©‘
d

2

dx 2
(v(x))

”™™™’ d x

= ½ l
0u(x)

“©©©‘- T d
2

dx 2
(v(x))

”™™™’ d x

= ( u , L v )

Here we have used integration by parts twice and twice applied the fact that both u(x) and v(x)
vanish at both 0 and l.

Eigenvalues and Eigenfunctions

An eigenfunction of the differential operator L is a function on CD
2[0,1] that satisfies the equation

L u(x) = - T d
2

dx 2
(u(x)) = š u(x)

or equivalently

uò(x) + š
T

u(x) = 0

with boundary conditions

u(0) = u(l) = 0

Using methods from Math 210, we can solve this equation and see that solutions take the form

u(x) = sin( š
T

x)

where š has to be chosen so that
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š
T

= n ¼
l

for n = 1, 2, 3, … so that u(x) will vanish at x = l. Thus we see that the operator has an infinite

number of eigenvalues

šn = T n
2 ¼2

l2

with associated eigenfunctions

un(x) = sin “©‘
n ¼

l
x”™’

Solving by the Spectral Method

We have seen that if a linear operator has a complete set of eigenfunctions and eigenvalues we can

use the spectral method to solve problems of the form

L(u(x)) = f(x)

by using eigenfunction expansions. We seek to write the solution

u(x) = ¾
n = 1

²
cn un(x)

We solve for the unknown coefficients by writing the right hand side as an expansion in the

eigenfunctions:

f(x) = ¾
n = 1

²
dn un(x)

Once we have determined the expansion coefficients dn we can solve the problem.

L(u(x)) = L “©©©‘¾n = 1

²
cn un(x)”™™™’ = ¾

n = 1

²
cn šn un(x) = f(x) = ¾

n = 1

²
dn un(x)

Since the eigenfunctions form a basis for our space and are independent, this equation can be solved

by setting

cn šn = dn

or

cn = dn
šn

The only thing left to do here is to compute the dn coefficients. We do this by using the inner

product:
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(f(x) , uk(x)) = “©©©‘¾n = 1

²
dn un(x) , uk(x)”™™™’ = ¾

n = 1

²
(dn un(x) , uk(x)) = dk (uk(x) , uk(x))

or

dk = (f(x) , uk(x))
(uk(x) , uk(x))

These coefficients, called Fourier coefficients, are computed by using the integral definition of the

inner product.

dk =
½ l

0f(x) uk(x) d x

½1

0 uk(x) uk(x) d x
=

½ l
0f(x) sin “©©©‘

k ¼
l

x”™™™’ d x

½ l
0sin

2 “©©©‘
k ¼
l

x”™™™’ d x

Noting that

½ l
0sin

2 “©©©‘
k ¼
l

x”™™™’ d x = 1
4

“©©©‘-
sin(2 ¼ k)

¼ k
+ 2

”™™™’ l = l
2

this simplifies to

dk = 2
l
½ l

0f(x) sin “©©©‘
k ¼
l

x”™™™’ d x

Computing a finite approximation

The expansion of the function f(x) in terms of eigenfunctions

f(x) = ¾
n = 1

²
dn un(x)

has an infinite number of terms. In practice, we can compute only finitely many Fourier coefficients.

This produces a finite approximation

f(x) ¦ fN(x) = ¾
n = 1

N
dn un(x)

which in turn leads to a finite approximation for the solution:

L(uN(x)) = fN(x)

where

uN(x) = ¾
n = 1

N
cn un(x)

where as before
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cn = dn
šn

dn = 2
l
½ l

0f(x) sin “©‘
n ¼

l
x”™’ d x

We leave it as an open question for now whether the function uN(x) is the closest approximation to

the actual solution to the equation

L(u(x)) = fN(x)

in the subspace of functions that take the form

uN(x) = ¾
n = 1

N
cn un(x)


