## Differential Operators

Consider the differential operator

$$
L(u(x))=-T \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}(u(x))
$$

acting on the space $C^{2}[0, l]$ of twice-continuously differentiable functions on the closed interval $[0, l]$. This operator is a linear operator, because

$$
\left.\left.\left.L(\alpha u(x)+\beta v(x))=-T \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}(\alpha u(x)+\beta v(x))=\alpha \right\rvert\,-T \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}(u(x))\right)+\beta \left\lvert\,-T \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}(v(x))\right.\right)
$$

We want to bring the methods of chapter 3 to bear on this operator to solve equations of the form

$$
L(u(x))=f(x)
$$

## Boundary Conditions

One problem with the operator as described above is that it does not have a trivial null space. The null space of this operator is the set of all functions that satisfy

$$
L(u(x))=-T \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}(u(x))=0
$$

It is easy to see that any function of the form

$$
u(x)=a x+b
$$

satisfies this equation, giving the operator $L$ a non-trivial null space. This in turn makes the solutions to the differential equation non-unique.

The usual fix for this problem is to impose extra conditions on the equation. If we require that solutions to

$$
-T \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}(u(x))=0
$$

also satisfy the Dirichlet boundary conditions

$$
u(0)=u(l)=0
$$

then the only function in the null space will be the function

$$
u(x)=0
$$

Another way to look at this is to say that we have restricted the original operator to act on a subspace $C_{D}{ }^{2}[0,1]$ of $C^{2}[0, l]$, called the Dirichlet subspace. This subspace consists of all twice
continuously differentiable functions on $[0, l]$ that vanish at the boundary.

## Symmetry

The space of functions that we are operating on, $C_{D}{ }^{2}[0,1]$, is also an inner product space. On this space we use the inner product

$$
(u, v)=\int_{0}^{l} u(x) v(x) d x
$$

The operator $L$ is a symmetric operator on this space:

$$
\begin{aligned}
& \left.(L u, v)=\left.\int_{0}^{l}\right|_{\left(-T \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}(u(x))\right.} ^{)}|v(x) d x=v(x)|-T \frac{\mathrm{~d}}{\mathrm{~d} x} u(x)\right) \left.^{\prime}| |_{0}^{l}+\left.\int_{0}^{l}\right|^{( } T \frac{\mathrm{~d}}{\mathrm{~d} x} u(x) \right\rvert\,\left(\left.\frac{\mathrm{d}}{\mathrm{~d} x} v(x) \right\rvert\, d x\right. \\
& \left.=0+T u(x) \left\lvert\, \frac{\mathrm{d}}{(\mathrm{~d} x} v(x)\right.\right) \left.\left|\left.\right|_{0}{ }^{l}-\int_{0}^{l} T u(x)\right| \frac{\mathrm{d}^{2}}{\left(\mathrm{~d} x^{2}\right.}(v(x)) \right\rvert\, d x \\
& \left.=\int_{0}^{l} u(x) \left\lvert\,-T \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}(v(x))\right.\right) \mid d x \\
& =(u, L v)
\end{aligned}
$$

Here we have used integration by parts twice and twice applied the fact that both $u(x)$ and $v(x)$ vanish at both 0 and $l$.

## Eigenvalues and Eigenfunctions

An eigenfunction of the differential operator $L$ is a function on $C_{D}{ }^{2}[0,1]$ that satisfies the equation

$$
L u(x)=-T \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}(u(x))=\lambda u(x)
$$

or equivalently

$$
u^{\prime \prime}(x)+\frac{\lambda}{T} u(x)=0
$$

with boundary conditions

$$
u(0)=u(l)=0
$$

Using methods from Math 210, we can solve this equation and see that solutions take the form

$$
u(x)=\sin \left(\sqrt{\frac{\lambda}{T}} x\right)
$$

where $\lambda$ has to be chosen so that

$$
\sqrt{\frac{\lambda}{T}}=\frac{n \pi}{l}
$$

for $n=1,2,3, \ldots$ so that $u(x)$ will vanish at $x=l$. Thus we see that the operator has an infinite number of eigenvalues

$$
\lambda_{n}=T \frac{n^{2} \pi^{2}}{l^{2}}
$$

with associated eigenfunctions

$$
u_{n}(x)=\sin \left(\frac{n \pi}{l} x_{)}\right)
$$

## Solving by the Spectral Method

We have seen that if a linear operator has a complete set of eigenfunctions and eigenvalues we can use the spectral method to solve problems of the form

$$
L(u(x))=f(x)
$$

by using eigenfunction expansions. We seek to write the solution

$$
u(x)=\sum_{n=1}^{\infty} c_{n} u_{n}(x)
$$

We solve for the unknown coefficients by writing the right hand side as an expansion in the eigenfunctions:

$$
f(x)=\sum_{n=1}^{\infty} d_{n} u_{n}(x)
$$

Once we have determined the expansion coefficients $d_{n}$ we can solve the problem.

$$
L(u(x))=L\left|\left(\sum_{n=1}^{\infty} c_{n} u_{n}(x)\right)\right|=\sum_{n=1}^{\infty} c_{n} \lambda_{n} u_{n}(x)=f(x)=\sum_{n=1}^{\infty} d_{n} u_{n}(x)
$$

Since the eigenfunctions form a basis for our space and are independent, this equation can be solved by setting

$$
c_{n} \lambda_{n}=d_{n}
$$

or

$$
c_{n}=\frac{d_{n}}{\lambda_{n}}
$$

The only thing left to do here is to compute the $d_{n}$ coefficients. We do this by using the inner product:

$$
\left.\left.\left(f(x), u_{k}(x)\right)=\mid \sum_{n=1}^{\infty} d_{n} u_{n}(x), u_{k}(x)\right)\right\}=\sum_{n=1}^{\infty}\left(d_{n} u_{n}(x), u_{k}(x)\right)=d_{k}\left(u_{k}(x), u_{k}(x)\right)
$$

or

$$
d_{k}=\frac{\left(f(x), u_{k}(x)\right)}{\left(u_{k}(x), u_{k}(x)\right)}
$$

These coefficients, called Fourier coefficients, are computed by using the integral definition of the inner product.

$$
d_{k}=\frac{\int_{0}^{l} f(x) u_{k}(x) d x}{\int_{0}^{1} u_{k}(x) u_{k}(x) d x}=\frac{\int_{0}^{l} f(x) \sin \left|\left(\frac{k \pi}{l} x\right)\right| d x}{\left.\int_{0}^{l} \sin ^{2} \left\lvert\, \frac{k \pi}{l} x\right.\right) d x}
$$

Noting that

$$
\left.\int_{0}^{l} \sin ^{2}\left|\left(\frac{k \pi}{l} x\right)\right| d x=\frac{1}{4}\left(-\frac{\sin (2 \pi k)}{\pi k}+2\right) \right\rvert\, l=\frac{l}{2}
$$

this simplifies to

$$
\left.d_{k}=\frac{2}{l} \int_{0}^{l} f(x) \sin \left(\frac{k \pi}{l} x\right) \right\rvert\, d x
$$

## Computing a finite approximation

The expansion of the function $f(x)$ in terms of eigenfunctions

$$
f(x)=\sum_{n=1}^{\infty} d_{n} u_{n}(x)
$$

has an infinite number of terms. In practice, we can compute only finitely many Fourier coefficients. This produces a finite approximation

$$
f(x) \approx f_{N}(x)=\sum_{n=1}^{N} d_{n} u_{n}(x)
$$

which in turn leads to a finite approximation for the solution:

$$
L\left(u_{N}(x)\right)=f_{N}(x)
$$

where

$$
u_{N}(x)=\sum_{n=1}^{N} c_{n} u_{n}(x)
$$

where as before

$$
\begin{gathered}
c_{n}=\frac{d_{n}}{\lambda_{n}} \\
d_{n}=\frac{2}{l} \int_{0}^{l} f(x) \sin \left(\frac{n \pi}{l} x_{p}\right) d x
\end{gathered}
$$

We leave it as an open question for now whether the function $u_{N}(x)$ is the closest approximation to the actual solution to the equation

$$
L(u(x))=f_{N}(x)
$$

in the subspace of functions that take the form

$$
u_{N}(x)=\sum_{n=1}^{N} c_{n} u_{n}(x)
$$

