
Vector SpacesA vector space is a set of elements V and a set of scalar elements along with two operations, addition and scalarmultiplication, that satisfy the following conditions:• u + v = v + u for all elements u, v in V• (u + v) + w = u + (v + w) for all elements u, v, and w in V.• There is a 0 element that satisfies u + 0 = u for all u in V.• For each u in V there is an element -u that satisfies u + (-u) = 0.• α(u + v) = α u + α v for all scalars α and elements u, v in V.• (α + β) u = α u + β u for all scalars α and β and all elements u in V.• α (β u) = (α β) u for all scalars α and β and all elements u in V.• 1 u = u for all u in V.SubspacesA subspace U of a vector space V is a subset of V containing the 0 vector that is closed under the operations ofvector addition and scalar multiplication.Linear OperatorsA function f that maps a vector space V to a vector space W is a linear operator if for all u and v in V and allscalars α and β we have f(α u + β v) = α f(u) + β f(v)Understanding the Action of Linear OperatorsA key aspect of linear algebra is understanding what effect a linear operator f:V→U has on vectors in V. One of thefirst questions to ask about a linear operator f is what its null space is. If f:V→U is a linear operator on V, the set N(f) is the subset of all vectors v in V for which f(v) = 0.The first important fact about the set N(f) is that it is a subspace of V:• f(0) = 0 for all linear operators (why?), so 0 is always in N(f).• If u and v are in N(f) and α and β are any two scalars, f(α u + β v) = α f(u) + β f(v) = 0, so N(f)is closed under addition and scalar multiples.An important fact about null spaces is that solutions of f(v) = u are unique if and only if N(f) = {0}. This tells usthat uniqueness questions concerning linear operator equations f(v) = u can be addressed by trying to understandthe null space of f. 1



What about the existence of solutions to linear operator equations f(v) = u? It turns out that even here null spaceshave something useful to tell us. Here is a result that applies to the special case of an operator that maps the vectorspace ℝn to ℝn. Such operators can be represented as matrix multiplications.Theorem (The Fredholm Alternative) Suppose A is an n by n matrix with real entries. The mapping f(x) = A x isa linear mapping from ℝn to ℝn. Exactly one of the following is true:1. The null space of f(x) = A x is trivial, and for all b in ℝn the equation f(x) = A x = b has asolution and that solution is unique.2. The null space of f(x) = A x is nontrivial, and the equation f(x) = A x = b has a solution if andonly if for all w in N(AT) we have that w·b = 0.An exampleConsider the matrix A = 1021 3174 -1423 2264The standard way to determine whether or not the equation A x = b has a solution for some vector b is to form theaugmented matrix 1021 3174 -1423 2264 b1b2b3b4and then do Gauss elimination on the augmented matrix. Here are the steps in that elimination1000 3111 -1444 2222 b1b2b3 - 2 b1b4 - b11000 3100 -1400 2200 b1b2b3 - 2 b1 - b2b4 - b1 - b2This tells us that in order for A x = b to have a solution the vector b has to satisfy a pair of auxiliary conditions: b4- b1 - b2 = 0 and b3 - 2 b1 - b2 = 0. The Fredholm alternative tells us that we can derive these same auxiliaryconditions by computing the null space of AT and then demanding that b be perpendicular to all the vectors in thatnull space. 2



To compute the null space of AT we do Gauss elimination on the augmented matrix13-12 0142 2726 1434 00001000 0142 2142 1142 00001000 0100 2100 1100 0000We read off from this that vectors in the null space of AT are combinations of the vectors-2-110 and -1-101The Fredholm alternative tells us that for A x = b to have a solution we must have b perpendicular to all vectors inthe null space of AT. This requires that -2-110 b1b2b3b4 = b3 - 2 b1 - b2 = 0-1-101 b1b2b3b4 = b4 - b1 - b2 = 0These are just the auxiliary conditions we derived earlier.Linear Independence, Span, and BasisA set of vectors v1, v2, …, vk is independent if the only solution to the equationc1 v1 + c2 v2 + ⋯ + ck vk = 0is the trivial solution c1 = c2 = ⋯ = ck = 0.A set of vectors v1, v2, …, vk spans a vector space (or subspace) if any vector u in that space can be written as acombination of the vectors vj: 3



c1 v1 + c2 v2 + ⋯ + ck vk = uA set of vectors that are both linearly independent and span a particular vector space is said to be a basis for thatsubspace. The number of vectors in a basis for a vector space determines that vector space's dimension.Note that bases are not unique. Often more than one basis is possible for a vector space, with some bases beingmore "useful" than others.Representations of Linear OperatorsWe have seen that the linear operator which is easiest to work with is the linear operator from ℝn to ℝm given byf(x) = A xwhere A is an m by n matrix. For example, if we want to solve the operator equationf(x) = bwe simply have to use Gauss elimination on the matrix equationA x = bGiven some other linear operator f that maps vectors from an n dimensional vector space V to an m dimensionalvector space U, there is a procedure for constructing a special matrix, called a representation, that allows us toconvert the operator equation f(v) = u into an equivalent matrix equation.Here is how that process works.1. Find a basis v1, v2, …, vn for the vector space V and a basis u1, u2, …, um for the vector space U.2. Given some vector v in V, express v as a combination of basis vectors:c1 v1 + c2 v2 + ⋯ + cn vn = v3. The vector c = c1c2⋮cn is called the representation of the vector v with respect to the basis v1, v2, …,vn for the vector space V.4. Likewise, we can express f(v) = u as a combination of basis vectors u1, u2, …, um for the vectorspace U. d1 u1 + d2 u2 + ⋯ + dm um = u = f(v)5. The vector d = d1d2⋮dn is called the representation of the vector u with respect to the basis u1, u2, …,4



um for the vector space U.≠6. The m by n matrix A with the property that A c = d is called the representation matrix for thelinear operator f with respect to the given bases for V and U.Constructing representationsThe process outlined above gives us hope that any linear operator mapping vectors from one finite dimensionalvector space to another can be converted to a matrix multiplication. There are unfortunately two things that theoutline does not tell us how to do. The first of these is how to find the coordinates of a vector's representation. Thesecond is how to actually determine the entries of the representation matrix A.Assuming for the moment that we can find a way to easily solve the first problem, here is a clever method to solvethe second problem.1. The basis vectors vk have particularly simple coordinate representations:vk = 0 v1 + 0 v2 + ⋯ + 1 vk + ⋯ + 0 vn2. Let uk = f(vk) and let dk be its coordinate representation with respect to the basis u1, u2, …, umfor the vector space U. d1 u1 + d2 u2 + ⋯ + dm um = dk = f(vk)3. We seek the matrix A such that A 00⋮1⋮0 = d1d2⋮dm
4. The properties of matrix multiplication tell us that the product A 00⋮1⋮0 returns the kth column of the

matrix A. Thus the vector d1d2⋮dm is the kth column of the matrix A.5. By allowing k to vary from 1 to n we will be able to construct all n columns of the m by n matrixA.In our next lecture we will see how to solve the first problem, thus completing this representation algorithm.5


