
Sneaking up on harder problemsMost of the material in an introductory course in partial differential equations deals with a small set of relativelysimple PDEs, such as the basic heat equation, wave equation, and Laplace equation. Once one moves beyond thoseelementary equations, things quickly get uglier. For example, we have seen may different ways to deal with the heatequation ρ c ∂u(x,t)∂t - κ ∂2u(x,t)∂x2 = f(x,t)This equation is relatively easy to deal with if one assumes uniform material properties. A somewhat more difficultcase is the case of non-uniform material properties. In this case the various physical constants ρ, c, and κ are notconstants, but may vary at different points in the material. The equation for this caseρ(x) c(x) ∂u(x,t)∂t - κ(x) ∂2u(x,t)∂x2 = f(x,t)can not be solved by any of the elementary methods we have seen so far.This is not to say that all of the ideas we have encountered up to this point are completely worthless. In fact, we canattack this problem by using a strategy that attempts to replicate a spectral method such as a Fourier series method.Here's how this might work in practice.1. Rewrite the equation slightly to simplify the t derivative term(s).∂u(x,t)∂t - ρ(x) c(x)κ(x) ∂2u(x,t)∂x2 = ρ(x) c(x)f(x,t)∂u(x,t)∂t - k(x) ∂2u(x,t)∂x2 = g(x,t)2. Find eigenvalues λn and eigenfunctions φn(x) of the time-independent steady-state problem withappropriate boundary conditions. - k(x) d2φn(x)dx2 = λn φn(x)- d2φn(x)dx2 = λn w(x) φn(x)3. Express the solution we seek as a combination of these eigenfunctions, and express the forcingfunction as a combination of the eigenfunctions.u(x,t) =∑n = 1∞ an(t) φn(x)g(x,t) =∑n = 1∞ cn(t) φn(x)1



4. Substitute these into the PDE to generate a family of ODEs to solve for the coefficients an(t).an′(t) φn(x) + λn an(t) φn(x) = cn(t) φn(x)5. Solve the ODEs for the coefficients an(t) and construct the solutionu(x,t) =∑n = 1∞ an(t) φn(x)Sturm - Liouville boundary value problemsAn essential step in the plan laid out above is the step where we find eigenvalues and eigenfunctions of thesteady-state solution by solving a BVP. To generalize the particular BVP we saw above slightly, we will consider afamily of BVPs called the Sturm-Liouville BVPs.- ddx(P(x) du(x)dx )+ R(x) u(x) = λ w(x) u(x)α1 u(a) + α2 dudx (a) = 0β1 u(b) + β2 dudx (b) = 0Here it is assumed that the functions P(x) and w(x) are both positive on the interval [a,b].The first practical problem we will encounter when working with Sturm-Liouville BVPs is that many of theseproblems can not be solved by elementary ODE techniques. The textbook shows one simple example- ddx(x du(x)dx )= λ x1 u(x)which can solved by rewriting the equation asx2 d2u(x)dx2 + x du(x)dx + λ u(x) = 0and noticing that this equation is an Euler equation and solving it by the usual method for solving an Eulerequation.Beyond a few, simple examples, the only reasonable approach is to use a tool like Mathematica to solve the BVP,apply a more advanced ODE solving technique, or use a numerical approximation method to solve the BVP. Theaccompanying Mathematica notebook shows some examples of more difficult BVPs, while the next lecture willdemonstrate how to use the finite element method to construct approximate solutions to Sturm-Liouville equations.Some theoretical resultsThe Sturm-Liouville BVP - ddx(P(x) du(x)dx )+ R(x) u(x) = λ w(x) u(x)2



α1 u(a) + α2 dudx (a) = 0β1 u(b) + β2 dudx (b) = 0is essentially the problem of finding eigenvalues and eigenfunctions of a differential operatorL u = w(x)1 (- ddx(P(x) du(x)dx )+ R(x) u(x))with appropriate boundary conditions. The first thing to say about this operator is that in general it will not besymmetric with respect to the standard inner product(f,g) = ∫ ba f(x) g(x) d xIt is possible to show, however, that this operator is symmetric with respect to a modified inner product(f,g)w = ∫ ba f(x) g(x) w(x) d xHere now are some theoretical results about the nature of eigenvalues and eigenfunctions of the linear operator L.As the textbook points out, the proofs of most of these results are beyond the scope of this course, so we presentthis list of results without proof.1. L has an infinite sequence of real eigenvalues λ1 < λ2 < ⋯, with λn →∞ as n →∞.2. Associated with each eigenvalue λn is a single eigenfunction φn(x).3. Eigenfunctions φn(x) corresponding to distinct eigenvalues λn are orthogonal with respect to the (, )w inner product.4. Assuming that the eigenfunctions φn(x) have been normalized with respect to the ( , )w innerproduct so that (φn(x),φn(x))w = 1, we can write functions defined on [a,b] as combinations ofthe eigenfunctions φn(x): f(x) =∑n = 1∞ an φn(x)an = (f(x),φn(x))w = ∫ ba f(x) φn(x) w(x) d x5. The eigenfunction φn(x) has exactly n - 1 zeros in the open interval (a,b) and each zero of φn(x)lies between two consecutive zeros of φn+1(x).Solving Sturm-Liouville Boundary Value ProblemsThe text treats the ODEs that arise when we solve Sturm-Liouville BVPs as mostly beyond the scope of thediscussion. In case you are curious, here are some general remarks concerning how these problems are most oftensolved. 3



The most common technique by far used to solve Sturm-Liouville BVPs is some variant of a power series solution.We have seen this technique already in the case of Bessel's equation - using that technique in section 11.3 we wereable to solve s2 d2S(s)ds2 + s dS(s)ds + (s2 - n2) S(s) = 0by assuming that S(s) = sα ∑k = 0∞ ak skand solving for α and the coefficients ak: α2 - n2 = 0S(s) =∑j = 0∞ j!(n+j)!(-1)j (2s )2j+nThere are many other standard ODEs that can be solved by this approach. Further examples include the Legendredifferential equation (1 - x2) d2 ydx2 - 2 x d ydx + l (l + 1) y = 0Some of the solutions of the Legendre equation are Legendre polynomials.and the Airy equation d2 yd x2 - k2 x y = 0whose solutions are the Airy functions.Some Examples in MathematicaThe accompanying Mathematica notebook shows some examples of Sturm-Liouville BVPs and their solutions. Asyou will see in those examples, very often Mathematica will solve a problem by applying a preliminary change ofvariables or other transformation to the problem to convert the ODE to Bessel's equation, the Legendre equation, orAiry's equation. After that transformation solutions will then be expressed in terms of the standard functions thatsolve those equations.
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