
TheTheTheThe WaveWaveWaveWave EquationEquationEquationEquation

The wave equation with Dirichlet boundary conditions models vibrations in a string. The function u(x,t)
gives the vertical displacement of the string at location x and time t.

∂2u
∂t2

- c2 ∂2u
∂x2

= 0

u(0,t) = u(l,t) = 0

u(x,0) = ψ(x)

∂u
∂t

(x,0) = γ(x)

Because this is a second order equation in the t variable, we need two sets of initial conditions for t. The
first set gives the initial displacement of the string, while the second set gives the initial vertical velocity

of the string.

AAAA roadroadroadroad mapmapmapmap totototo thethethethe solutionsolutionsolutionsolution

In these notes I am going to develop the d'Alembert solution for the wave equation. This solution is

actually a combination of three solution techniques, each of which is interesting in its own right.

The first technique is an operator factorization technique. This technique will make it possible for us to

write the general solution to the wave equation, ug as the combination of two solutions to simpler

problems:

ug = u1 + u2

In the course of solving the two subproblems whose solutions are u1 and u2 we will meet a second

technique, the method of characteristics.

To fully resolve the general solution into a specific solution that meets the boundary conditions for the

wave equation, we will make use of a superposition technique. We are going to use the general solution

to first derive solutions to two simpler problems. The function ua will solve the problem

ua(0,t) = ua(l,t) = 0

ua(x,0) = ψ(x)

∂ua
∂t

(x,0) = 0
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while the function ub will solve the problem

ub(0,t) = ub(l,t) = 0

ub(x,0) = 0

∂ub
∂t

(x,0) = γ(x)

By superposition the solution to the original boundary conditions will then be

u(x,t) = ua(x,t) + ub(x,t)

FactorizationFactorizationFactorizationFactorization

On occasion, it will be possible to take a linear, constant coefficient, second order operator and factor as

the combination of two first order constant coefficient operators. In the case of the wave equation, the

operator in question

L u = ∂2u
∂t2

- c2 ∂2u
∂x2

can be factored into two first order operators.

L u = ∂2u
∂t2

- c2 ∂2u
∂x2

= (∂
∂t

- c ∂
∂x)(∂

∂t
+ c ∂

∂x)u(x,t) = (∂
∂t

+ c ∂
∂x)(∂

∂t
- c ∂

∂x)u(x,t)

What is going on here is a specific example of the factorization technique. In this technique we start with

an operator that can be factored into a pair of linear operators that commute.

L u = L1 L2 u = L2 L1 u

In looking for solutions to the equation

L u = 0

we start by seeking functions u1 and u2 that satisfy

L1 u1 = 0

L2 u2 = 0

Since these are both first order PDEs, these equations will be easier to solve than the original equation.

Once we are able to solve these two equations, we note that
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L (c1 u1 + c2 u2)= (L c1 u1)+ (L c2 u2)

= c1 L2 L1 u1 + c2 L1 L2 u2

= c1 L2 0 + c2 L1 0 = 0

The choice of c1 and c2 in this solution is somewhat arbitrary, in that any choice the we make now will

get absorbed into the functions u1 and u2 when we apply the boundary conditions later. For that reason I

will pick the simplest combination, c1 = c2 = 1. With this choice, the general solution to the wave

equation before boundary conditions becomes

ug(x,t) = u1(x,t) + u2(x,t)

TheTheTheThe methodmethodmethodmethod ofofofof characteristicscharacteristicscharacteristicscharacteristics

To solve the subproblems for u1 and u2 we will apply is the method of characteristics, which is a method

that is frequently used to solve first order, constant coefficient PDEs. Consider the first subproblem:

L1 u1 = (∂
∂t

- c ∂
∂x)u(x,t) = 0

To find a solution to this equation, we seek a change of variables that allows us to write both t and x as

functions of two new variables p and q. If we fix q = q0 and allow p to vary, x(p,q0) and t(p,q0) will trace

out curves in space known as characteristic curves.

Characteristic curves are constructed by making two key demands:

1. Curves of constant q should correspond to curve of constant u1.

2. The initial curve, t = 0, should map to a curve p = 0. Everywhere along that curve we

should have q = x.

We can meet the first requirement by demanding

∂
∂p

u(x(p,q0),t(p,q0)) = (∂
∂t

- c ∂
∂x)u(x,t) = 0

If we can do this, we will have transformed our original equation into an equation

∂
∂p

u(p,q0) = 0

which is much easier to solve. To determine what the parameterization needs to be, we apply the chain

rule for partial differentiation:
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∂
∂p

u(x(p,q0),t(p,q0)) = ∂x
∂p

∂
∂ x

u(x,t) + ∂t
∂p

∂
∂ t

u(x,t) = (∂
∂t

- c ∂
∂x)u(x,t)

This forces

∂x
∂p

= -c

∂t
∂p

= 1

which has solutions

x = -c p + c1(q)

t = p + c2(q)

The second requirement above then forces

c2(q) = 0

c1(q) = x = q

This now gives us the desired transformation formulas:

t(p,q) = p

x(p,q) = -c p + q

This change of variables can also be easily inverted:

p(x,t) = t

q(x,t) = x + c t

Now we return to the original problem for u1(x,t):

L1 u1 = (∂
∂t

- c ∂
∂x)u1(x,t) = 0

To determine what these equations turn into we first do some applications of the chain rule:

∂
∂t
u1(x,t) = ∂p

∂t
∂
∂p

u1(p,q) + ∂q
∂t

∂
∂q

u1(p,q) = ∂
∂p

u1(p,q) + c ∂
∂q

u1(p,q)

∂
∂x

u1(x,t) = ∂p
∂x

∂
∂p

u1(p,q) + ∂q
∂x

∂
∂q

u1(p,q)= 0 + ∂
∂q

u1(p,q)
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This now turns the equation above into

(∂
∂t

- c ∂
∂x)u1(x,t) = ∂

∂p
u1(p,q) + c ∂

∂q
u1(p,q) - c ∂

∂q
u1(p,q) = ∂

∂p
u1(p,q) = 0

as desired.

This equation has solution

u1(p,q) = f(q) = f(x+c t) = u1(x,t)

We will determine the unknown function below when we apply boundary conditions.

To solve the second equation

L2 u2 = 0

we use a similar approach. I will spare you the details, but that equation can also be solved by a change

of variables

t(p,q) = p

x(p,q) = c p + q

This change of variables can also be easily inverted:

p(x,t) = t

q(x,t) = x - c t

This change of variables converts

L2 u2 = 0

into

∂
∂p

u2(p,q) = 0

which has solution

u2(p,q) = g(q) = g(x-c t) = u2(x,t)

This now gives us the general solution to the original problem:

ug(x,t) = u1(x,t) + u2(x,t) = f(x+c t) + g(x-c t)
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ApplyingApplyingApplyingApplying thethethethe boundaryboundaryboundaryboundary conditionsconditionsconditionsconditions

To apply the boundary conditions for the wave equation

u(x,0) = u1(x,0) + u2(x,0) = ψ(x)

∂u
∂t

(x,0) = ∂u1
∂t

(x,0) + ∂u2
∂t

(x,0)= γ(x)

we apply a simple trick. We actually solve two separate problems. The boundary conditions for the first

problem are

ua(x,0) = u1(x,0) + u2(x,0) = ψ(x)

∂ua
∂t

(x,0) = ∂u1
∂t

(x,0) + ∂u2
∂t

(x,0)= 0

The boundary conditions for the second problem are

ub(x,0) = u1(x,0) + u2(x,0) = 0

∂ub
∂t

(x,0) = ∂u1
∂t

(x,0) + ∂u2
∂t

(x,0)= γ(x)

The principle of superposition then tells us that the sum of the solutions to these two simpler problems

will solve the original set of boundary conditions.

To solve the first problem we assume that the solution looks like

f1(x+c t) + g1(x-c t)

and apply the boundary conditions to get that

ua(x,0) = f1(x) + g1(x) = ψ(x)

∂ua
∂t

(x,0) = -c f1′(x) + c g1′(x) = 0

To satisfy the first condition, we can simply pick

f1(x) = g1(x) =
2

ψ(x)

This will immediately satisfy the second condition:

∂u
∂t

(x,0) = -c f1′(x) + c g1′(x) = - c ψ′(x) + c ψ′(x) = 0
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Thus we see that

f1(x+c t) + g1(x-c t) =
2

ψ(x - c t) +
2

ψ(x + c t)

To solve the second problem we need

ub(x,0) = f2(x) + g2(x) = 0

∂ub
∂t

(x,0) = -c f2′(x) + c g2′(x) = γ(x)

The first equation leads immediately to

f2(x) = -g2(x)

Substituting this into the second equation gives

∂u
∂t

(x,0) = -c f2′(x) + c g2′(x) = c g2′(x) + c g2′(x) = γ(x)

which has solution

g2(x) =
2 c
1 ∫

x

0
γ(s) d s

Thus, the second problem has solution

f2(x - c t) + g2(x + c t) = -g2(x - c t) + g2(x + c t)

= -
2 c
1 ∫

x-ct

0
γ(s) d s +

2 c
1 ∫

x+ct

0
γ(s) d s

=
2 c
1 ∫

x+ct

x-ct
γ(s) d s

The complete solution to the problem with the original initial conditions is now just the sum of these two

separate solutions:

u(x,t) =
2

ψ(x-ct) +
2

ψ(x+ct) +
2 c
1 ∫

x+ct

x-ct
γ(s) d s
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