Heat equation with Neumann boundary conditions

We seek to solve

$$
\begin{gathered}
\rho c \frac{\partial u}{\partial t}-\kappa \frac{\partial^{2} u}{\partial x^{2}}=f(x, t) \\
\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(l, t)=0 \\
u(x, 0)=\psi(x)
\end{gathered}
$$

A preliminary problem

To generate some insight into the special behavior of this problem, we start by considering a simpler, related BVP:

$$
\begin{aligned}
& -\kappa \frac{\mathrm{d}^{2} u(x)}{\mathrm{d} x^{2}}=f(x) \\
& \frac{\mathrm{d} u}{\mathrm{~d} x}(0)=\frac{\mathrm{d} u}{\mathrm{~d} x}(l)=0
\end{aligned}
$$

To handle this we introduce a differential operator L_{N} defined on the subspace of functions that satisfy a Neumann boundary condition.

$$
L_{N}(u)=\left\{-\kappa u^{\prime \prime} \mid u \text { such that } u^{\prime}(0)=u^{\prime}(l)=0\right\}
$$

The eigenfunctions of this differential operator are $u_{0}(x)=1$ and $u_{k}(x)=\cos (n \pi x / l)$ for $k=1,2,3$,

As before, we start by multiplying both sides of the ODE by these eigenfunctions and integrating over the interval in question. There are two separate cases to consider. For $k=0$ we have

$$
\frac{1}{l} \int_{0}^{l}-\kappa \frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}} d x=\frac{1}{l} \int_{0}^{l} f(x) d x
$$

The integral on the left simplifies to

$$
\left.\frac{1}{l} \int_{0}^{l}-\kappa \frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}} d x=-\frac{\kappa}{l}\left(\frac{\mathrm{~d} u}{(\mathrm{~d} x}\right) \right\rvert\, 0_{0}^{l}=0
$$

In general, the integral on the right won't be 0 . That means that we are potentially stuck, unless we introduce a compatibility condition:

$$
\frac{1}{l} \int_{0}^{l} f(x) d x=0
$$

The reason that we have to impose this extra condition is that the operator $L_{N}(u)$ has a non-trivial null space. That means that we should expect the equation

$$
L_{N}(u)=f
$$

to not have a solution for some functions $f(x)$. The work-around for the moment is to impose this extra condition on $f(x)$ to guarantee that the problem will have a solution.

Assuming that this extra condition is satisfied, we can go to handle the integrals arising from the other eigenfunctions:

$$
\frac{2}{l} \int_{0}^{l}-\kappa \frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}} \cos \left(\frac{k \pi}{l} x\right)\left|d x=\frac{2}{l} \int_{0}^{l} f(x) \cos \left(\frac{k \pi}{l} x\right)\right| d x
$$

On the left we get after a couple of integrations by parts:

$$
\begin{gathered}
\left.\frac{2}{l} \int_{0}^{l}-\kappa \frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}} \cos \left(\frac{k \pi}{l} x\right) \right\rvert\, d x \\
\left.=-2 \frac{\kappa}{l} \frac{\mathrm{~d} u}{\mathrm{~d} x} \cos \left(\frac{(k \pi}{l} x_{\rho}\right) \|_{0}^{l}-\frac{2 \kappa k \pi}{l^{2}} \int_{0}^{l} \frac{\mathrm{~d} u}{\mathrm{~d} x} \sin \left(\frac{k \pi}{l} x_{1}\right) \right\rvert\, d x \\
=0-\frac{2 \kappa k \pi}{l^{2}}\left(u(x) \sin \left(\frac{k \pi}{l} x\right)\| \|_{0}^{l}+\frac{2 \kappa k^{2} \pi^{2}}{l^{3}} \int_{0}^{l} u(x) \cos \left(\frac{k \pi}{l} x\right)\right) d x
\end{gathered}
$$

Solving the full problem

We now return to

$$
\begin{gathered}
\rho c \frac{\partial u}{\partial t}-\kappa \frac{\partial^{2} u}{\partial x^{2}}=f(x, t) \\
\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(l, t)=0 \\
u(x, 0)=\psi(x)
\end{gathered}
$$

Before we seek to solve this, we may want to impose a compatibility condition similar to what we imposed in the earlier problem.

$$
\frac{1}{l} \int_{0}^{l} f(x, t) d x=0
$$

If the $f(x, t)$ we are given does not satisfy this compatibility condition, we can try the following trick. Introduce the function

$$
g(t)=\frac{1}{l} \int_{0}^{l} f(x, t) d x
$$

and let $\beta(t)$ be the solution to

$$
\begin{gathered}
\rho c \beta^{\prime}(t)=g(t) \\
\beta(0)=\frac{1}{l} \int_{0}^{l} \psi(x) d x
\end{gathered}
$$

and instead try to solve

$$
\begin{gathered}
\rho c \frac{\partial u}{\partial t}-\kappa \frac{\partial^{2} u}{\partial x^{2}}=f(x, t)-g(t) \\
\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(l, t)=0 \\
u(x, 0)=\psi(x)-\beta(0)
\end{gathered}
$$

By construction, this modified problem will automatically satisfy the compatibility condition:

$$
\begin{gathered}
\frac{1}{l} \int_{0}^{l} f(x, t)-g(t) d x=\frac{1}{l} \int_{0}^{l} f(x, t) d x-\frac{1}{l} \int_{0}^{l} g(t) d x \\
=g(t)-\frac{1}{l}(l g(t))=0
\end{gathered}
$$

How does the solution to the modified problem help us to solve the original problem? Let $u_{g}(x)$ be the solution to

$$
\begin{gathered}
\rho c \frac{\partial u_{g}}{\partial t}-\kappa \frac{\partial^{2} u_{g}}{\partial x^{2}}=f(x, t)-g(t) \\
\frac{\partial u_{g}}{\partial x}(0, t)=\frac{\partial u_{g}}{\partial x}(l, t)=0 \\
u_{g}(x, 0)=\psi(x)-\beta(0)
\end{gathered}
$$

by linearity of the operator we have that

Thus $u_{g}(x, t)+\beta(t)$ solves the original problem.

The bottom line now is that we have two problems to solve. The simpler problem

$$
\begin{gathered}
\rho c \beta^{\prime}(t)=g(t) \\
\beta(0)=\frac{1}{l} \int_{0}^{l} \psi(x) d x
\end{gathered}
$$

can be solved immediately by integration:

$$
\beta(t)=\int_{0}^{t} \frac{g(s)}{\rho c} d s+\frac{1}{l} \int_{0}^{l} \psi(x) d x
$$

The main problem

$$
\begin{gathered}
\rho c \frac{\partial u_{g}}{\partial t}-\kappa \frac{\partial^{2} u_{g}}{\partial x^{2}}=f(x, t)-g(t) \\
\frac{\partial u_{g}}{\partial x}(0, t)=\frac{\partial u_{g}}{\partial x}(l, t)=0 \\
u_{g}(x, 0)=\psi(x)-\beta(0)
\end{gathered}
$$

satisfies a compatibility condition, so we can expect to solve it by appropriate application of the Finite element method.

