The Vector Norm

Definition Let V be a vector space. A norm on V is a real-valued function $|| \cdot ||: V \to \mathbb{R}$ that satisfies the following properties.

1. $||\mathbf{v}|| \ge 0$ for all $\mathbf{v} \in V$ and $||\mathbf{v}|| = 0$ if and only if $\mathbf{v} = \mathbf{0}$.

2. $||\alpha \mathbf{v}|| = |\alpha| ||\mathbf{v}||$ for all scalars α and all vectors $\mathbf{v} \in V$.

3. $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$ for all $\mathbf{u}, \mathbf{v} \in V$.

A vector **v** is said to be a *normal vector* if $||\mathbf{v}|| = 1$.

The Inner Product

Definition Let V be a real vector space. A (real) inner product on V is a function (\cdot, \cdot) that maps pairs of vectors from V to real numbers that satisfies the following properties.

- 1. $(\mathbf{u}, \mathbf{v}) = (\mathbf{v}, \mathbf{u})$ for all vectors \mathbf{u} and \mathbf{v} in V.
- 2. $(\alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w}) = \alpha(\mathbf{u}, \mathbf{w}) + \beta(\mathbf{v}, \mathbf{w})$ and $(\mathbf{w}, \alpha \mathbf{u} + \beta \mathbf{v}) = \alpha(\mathbf{w}, \mathbf{u}) + \beta(\mathbf{w}, \mathbf{v})$ for all vectors \mathbf{u}, \mathbf{v} , and \mathbf{w} in V and all real numbers α and β .
- 3. $(\mathbf{u},\mathbf{u}) \ge 0$ for all vectors $\mathbf{u} \in V$ and $(\mathbf{u},\mathbf{u}) = 0$ if and only if $\mathbf{u} = \mathbf{0}$.

Definition Two vectors \mathbf{u} and \mathbf{v} in a vector space are said to be *orthogonal* with respect to an inner product if $(\mathbf{u}, \mathbf{v}) = 0$.

Examples

The standard inner product on \mathbb{R}^n is the vector dot product.

$$(\mathbf{u},\mathbf{v}) = \sum_{i=1}^n \mathbf{u}_i \, \mathbf{v}_i$$

The standard norm on \mathbb{R}^n is

$$||\mathbf{u}|| = \sqrt{(\mathbf{u},\mathbf{u})}$$

The vector space C[0,1] of continuous functions on the interval [0,1] has an inner product

$$(f,g) = \int_0^1 f(x) \, g(x) \, dx$$

This inner product is known as the L^2 inner product. Likewise, we can define an L^2 norm for this vector space by

$$||f|| = \sqrt{\int_0^1 (f(x))^2 dx}$$

Other possible norms include the L^1 norm

$$||f|| = \int_0^1 |f(x)| dx$$

and the \boldsymbol{L}^{∞} norm

$$|| f || = max_{x \in [0,1]} |f(x)|$$

Orthogonal Bases

Definition A basis $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ for a vector space V is an orthonormal basis if $(\mathbf{v}_i, \mathbf{v}_j) = 0$ for all $i \neq j$ and $(\mathbf{v}_i, \mathbf{v}_i) = 1$ for all i.

Observation If a vector space has an orthonormal basis, computing coordinate representations with respect to that basis is very easy. Given an arbitrary vector \mathbf{v} in V, we seek to compute a coordinate

vector $\mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$ such that

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n = \mathbf{v}$$

If the basis is orthonormal, we can easily compute the coordinates c_i by taking the inner product with respect to v_i on both sides of the equation:

$$(c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n, v_i) = (\mathbf{v}, \mathbf{v}_i)$$

$$c_1 (\mathbf{v}_1, \mathbf{v}_i) + c_2 (\mathbf{v}_2, \mathbf{v}_i) + \dots + c_n (\mathbf{v}_n, \mathbf{v}_i) = (\mathbf{v}, \mathbf{v}_i)$$

$$c_1 0 + c_2 0 + \dots + c_i 1 + \dots + c_n 0 = (\mathbf{v}, \mathbf{v}_i)$$

$$c_i = (\mathbf{v}, \mathbf{v}_i)$$

Constructing an Orthonormal Basis

The Gram-Schmidt algorithm is an algorithm that can convert a basis for a vector space into an alternative basis that is orthonormal. Here is an outline of that algorithm. Let \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_n be a basis for a vector space V.

1. Convert the vector \mathbf{v}_1 into a normal vector by dividing it by its own norm.

$$\mathbf{u}_1 = \frac{1}{||\mathbf{v}_1||} \ \mathbf{v}_1$$

2. Construct

$$\mathbf{p}_2 = \mathbf{v}_2 \text{ - } (\mathbf{u}_1 \ , \ \mathbf{v}_2) \ \mathbf{u}_1$$

The term $(\mathbf{u}_1, \mathbf{v}_2) \mathbf{u}_1$ is the *projection* of \mathbf{v}_2 onto \mathbf{u}_1 . By construction, \mathbf{p}_2 is orthogonal to \mathbf{v}_1 (why?). **3.** We then form

$$\mathbf{u}_2 = \frac{1}{||\mathbf{p}_2||} \ \mathbf{p}_2$$

in order to make \mathbf{u}_2 be both normal and orthogonal to \mathbf{u}_1 .

4. Next, compute

$$\mathbf{p}_3 = \mathbf{v}_3$$
 - $(\mathbf{u}_1 \;,\, \mathbf{v}_3) \; \mathbf{u}_1$ - $(\mathbf{u}_2 \;,\, \mathbf{v}_3) \; \mathbf{u}_2$

and subsequently

$$\mathbf{u}_3 = rac{1}{||\mathbf{p}_3||} \mathbf{p}_3$$

to produce a vector that is normal and perpendicular to both \mathbf{u}_1 and \mathbf{u}_2 .

5. The process repeats until all of the original \mathbf{v}_i vectors have been processed. The result is a set of \mathbf{u}_i vectors which form an orthonormal basis for V.

The Projection Theorem

Here is a theorem from the text which also makes use of the concept of a projection.

Projection Theorem Let V be a vector space with an inner product. Let W be a finite dimensional subspace of V and let \mathbf{v} by an arbitrary vector in V.

1. There is a unique \mathbf{u} in W such that

$$||\mathbf{v} - \mathbf{u}|| = min_{\mathbf{w} \in W} ||\mathbf{v} - \mathbf{w}||$$

 \mathbf{u} is known as the projection of \mathbf{v} onto the subspace W.

2. $(\mathbf{v}-\mathbf{u},\mathbf{z}) = 0$ for all $\mathbf{z} \in W$.

3. If $\{\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_n\}$ is a basis for W then

$$\mathbf{u} = \sum_{i=1}^{n} x_i \, \mathbf{w}_i$$

where

```
egin{aligned} G \, \mathbf{x} &= \mathbf{b} \ & \ G_{i,j} &= (\mathbf{w}_i \;, \; \mathbf{w}_j) \ & \ & \mathbf{b}_i &= (\mathbf{w}_i \;, \; \mathbf{v}) \end{aligned}
```

The matrix G is known as the Gram matrix and the equations $G \mathbf{x} = \mathbf{b}$ are known as the normal

equations.

4. If $\{\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_n\}$ is an orthogonal basis for W then

$$u = \sum_{i=1}^{n} rac{(w_i \ , \ v)}{(w_i \ , \ w_i)} \ w_i$$

Observation A very important thing to note about the projection theorem is that the original vector space V does not have to be a finite dimensional space. The only requirement in the theorem is that W must be a finite dimensional subspace of V.

This opens an intriguing possibility. Suppose we have a linear operator f that maps V to V. If we want to make a finite representation for f we might do the following:

- 1. For a $\mathbf{v} \in V$ we compute the projection \mathbf{u} of \mathbf{v} onto W.
- 2. We compute $f(\mathbf{u})$ and hope that $f(\mathbf{u})$ stays in W. If it does not, we project $f(\mathbf{u})$ back onto the subspace W to make a vector \mathbf{y} .
- 3. What we have constructed is a restriction of the operator j onto the subspace W. If f is still linear on W, we can construct a finite representation for the restricted operator and eventually represent that as a matrix A such that

$$A \mathbf{u} = \mathbf{y}$$