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Let f(x) be a periodic function with period 2 l defined on the interval [-l,l]. The complex Fourier coefficients of f(
x) are

cn =
2 l
1 ∫

l

-l
f(s) e-i n π s/l d s

This leads to a Fourier series representation for f(x)

f(x) = ∑
n = -∞

∞

cn ei n π x/l

We have two important questions to pose here.

1. For a given x, does the infinite series converge?

2. If it converges, does it necessarily converge to f(x)?

We can begin to address both of these issues by introducing the partial Fourier series

fN(x) = ∑
n = -N

N

cn ei n π x/l

In terms of this function, our two questions become

1. For a given x, does lim
N→∞

fN(x) exist?

2. If it does, is lim
N→∞

fN(x) = f(x)?

TheTheTheThe DirichletDirichletDirichletDirichlet kernelkernelkernelkernel

To begin to address the questions we posed about fN(x) we will start by rewriting fN(x). Initially, fN(x) is defined

by

fN(x) = ∑
n = -N

N

cn ei n π x/l

If we substitute the expression for the Fourier coefficients

cn =
2 l
1 ∫

l

-l
f(s) e-i n π s/l d s

into the expression for fN(x) we obtain

fN(x) = ∑
n = -N

N

(2 l
1 ∫

l

-l
f(s) e-i n π s/l d s) ei n π x/l

= ∫
l

-l (2 l
1 ∑

n = -N

N

(e-i n π s/l ei n π x/l))f(s) d s
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= ∫
l

-l (2 l
1 ∑

n = -N

N

ei n π (x-s)/l)f(s) d s

The expression in parentheses leads us to make the following definition. The Dirichlet kernel is the function

defined as

KN(x) =
2 l
1 ∑

n = -N

N

ei n π x/l

In terms of the Dirichlet kernel, we can write the expression for fN(x) as

fN(x) = ∫
l

-l
KN(x-s)f(s) d s

SomeSomeSomeSome propertiespropertiespropertiesproperties ofofofof thethethethe DirichletDirichletDirichletDirichlet kernelkernelkernelkernel

By rewriting the expression for the Dirichlet kernel, we can recogize that the Dirichlet kernel is actually a

geometric series.

KN(x) =
2 l
1 ∑

n = -N

N

ei n π x/l =
2 l
1 ∑

n = -N

N

(ei π x/l)
n

Because this is a geometric series, it can be summed explicitly.

KN(x) =
2 l
1 ∑

n = -N

N

(ei π x/l)
n
=

2 l
1

ei π x/l - 1

(ei π x/l)
N+1

- (ei π x/l)
-N

=
2 l
1

(ei π x/l)
1/2

- (ei π x/l)
-1/2

(ei π x/l)
N+1/2

- (ei π x/l)
-(N+1/2)

=
2 l
1

ei π x/(2l) - e-i π x/(2l)

(ei π x/l)
N+1/2

- (ei π x/l)
-(N+1/2)

=
2 l sin (2 l

π x)

sin( 2 l
(2N+1) π x)

Some explicit integrations show that

∫
0

-l
KN(x) d x = ∫

l

0
KN(x) d x =

2
1

ConvolutionsConvolutionsConvolutionsConvolutions

The integral we saw earlier
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fN(x) = ∫
l

-l
KN(x-s)f(s) d s

is an example of what is known as a convolution integral. Specifically, if g(x) and h(x) are two periodic functions

with period 2 l defined on [-l,l] the convolution of g and h is defined by

(g*h)(x) = ∫
l

-l
g(x-s) h(s) d s

Here is an important property of convolution integrals. From the definition we have that

(g*h)(x) = ∫
l

-l
g(x-s) h(s) d s

If we introduce a change of variables z = x - s in the integral, the integral becomes

∫
x-l

x+l
g(z)h(x-z)(-1) d z = ∫

x+l

x-l
g(z)h(x-z) d z

Since both g and h are assumed to be periodic with the same period, if we shift the range of integration by a

factor of x, the integral has the same value.

∫
x+l

x-l
g(z)h(x-z) d z = ∫

l

-l
g(z)h(x-z) d z

Replacing the variable z with s in the final integral gives

(g*h)(x) = ∫
l

-l
g(x-s) h(s) d s = ∫

l

-l
g(s)h(x-s) d s = (h*g)(x)

This is an important symmetry property of the convolution of periodic functions.

For our present purposes, because both the Dirichlet kernel KN(x) and our function f(x) are periodic, we have

that

fN(x) = ∫
l

-l
KN(x-s) f(s) d s = (KN*f)(x) = (f*KN)(x) = ∫

l

-l
KN(s) f(x-s) d s

This latter form is a more convenient form to work with.

TheTheTheThe pointwisepointwisepointwisepointwise convergenceconvergenceconvergenceconvergence theoremtheoremtheoremtheorem

A function f(x) is said to be piecewise smooth on an interval [-l,l] if the function has at most a finite number of

isolated discontinuities in that interval, and at each point where the function is discontinuous it has a finite limit

on either side of the discontinuity. That is,

lim
s→x- f(s) = f(x-)

lim
s→x+

f(s) = f(x+)

both exist and are finite.
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We are now in a position to state

PointwisePointwisePointwisePointwise convergenceconvergenceconvergenceconvergence theoremtheoremtheoremtheorem forforforfor complexcomplexcomplexcomplex FourierFourierFourierFourier seriesseriesseriesseries

If f(x) is a piecewise smooth periodic function defined on the interval [-l,l] then

lim
N→∞

fN(x) = f(x)

whereever f(x) is continuous. At points where f(x) has a jump discontinuity,

lim
N→∞

fN(x) =
2
1 (f(x-) + f(x+))

ProofProofProofProof We will show a somewhat stronger pair of results.

lim
N→∞

∫
0

-l
KN(s)f(x-s) d s =

2
1 f(x+)

lim
N→∞

∫
l

0
KN(s)f(x-s) d s =

2
1 f(x-)

both proofs are similar, so we will only show the proof of the second equality.

To start with, we will use a fact about the Dirichlet kernel I mentioned above.

∫
l

0
KN(s) d s =

2
1

Using this gives us

2
1 f(x-) = ∫

l

0
f(x-) KN(s) d s

Thus, to show that

lim
N→∞

∫
l

0
KN(s)f(x-s) d s =

2
1 f(x-)

we can instead prove the equivalent

lim
N→∞

∫
l

0
KN(s)(f(x-s) - f(x-)) d s = 0

Earlier I showed that

KN(s) =
2 l sin (2 l

π s)

sin( 2 l
(2N+1) π s)

Substituting this into the integral gives
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lim
N→∞

∫
l

0 2 l sin (2 l
π s)

sin( 2 l
(2N+1) π s)

(f(x-s) - f(x-)) d s = 0

or

lim
N→∞

∫
l

0 2 l sin (2 l
π s)

f(x-s) - f(x-) sin( 2 l
(2N+1) π s) d s = 0

Next, we introduce

F(x)(s) =
2 l sin (2 l

π s)
f(x-s) - f(x-)

To proceed beyond this point we are now going to need a pair of lemmas.

LemmaLemmaLemmaLemma 1111

lim
s→0

+
F(x)(s) = lim

s→0
+
2 l sin (2 l

π s)
f(x-s) - f(x-) =

lim
s→0

+(2 l
π cos(2 l

π s))

lim
s→0

+(- df
dx

(x-s))

Even if x is a point of discontinuity, if we assume that f is piecewise smooth, then

lim
s→0

+(- df
dx

(x-s))
exists and is finite. Thus,

lim
s→0

+
F(x)(s) = - df

dx
(x-)

LemmaLemmaLemmaLemma 2222 (Bessel's(Bessel's(Bessel's(Bessel's Inequality)Inequality)Inequality)Inequality)

If {φN(s)} is a sequence of orthogonal functions defined on [0,l] then for all N and all functions F(s) we have

∑
N = 0

∞

(φN(s) , φN(s))
(F(s) , φN(s)) 2

≤ (F(s),F(s))

Here

( , )

is any inner product for our function space. In practice, this is usually the standard complex inner product

(F(s) , φN(s)) = ∫
l

0
F(s) φN(s) d s
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We now use these two lemmas to continue with the proof of our main result. We need to prove that

lim
N→∞

∫
l

0
F(x)(s) sin( 2 l

(2N+1) π s) d s = 0

To prove this, we apply Bessel's inequality with F(s) = F(x)(s) and φN(s) = sin((2N+1) π s/2 l). The first thing to

note here is that the sequence of functions

φN(s) = sin( 2 l
(2N+1) π s)

is in fact a sequence of orthogonal functions defined on the interval [0,l].

Now consider the inner product

(F(s),F(s)) = (F(x)(s),F(x)(s)) = ∫
l

0 (F(x)(s))
2
d s

The only thing that could keep this integral from being finite is a singularity at s = 0. By lemma 1 above,

lim
s→0

+
F(x)(s) = - df

dx
(x-)

so there is no such singularity. Thus, the right hand side in the inequality

∑
N = 0

∞

(φN(s) , φN(s))

(F(x)(s) , φN(s))
≤ (F(x)(s) , F(x)(s))

must be finite, and hence the sum on the left must converge.

For that sum to converge, a necessary condition is that

lim
N→∞ (φN(s) , φN(s))

(F(x)(s) , φN(s)) 2

= 0

Since

(φN(s) , φN(s)) = ∫
l

0 (sin( 2 l
(2N+1) π s))

2

d s

=
2 N π + π

2
1 (sin(2 N π) + 2 N π + π) l

=
2
l

saying that

lim
N→∞ (φN(s) , φN(s))

(F(x)(s) , φN(s)) 2

= 0
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means that we must have

lim
N→∞

(F(x)(s) , φN(s)) = 0

This translates into the condition that

lim
N→∞

∫
l

0
F(x)(s) sin( 2 l

(2N+1) π s) d s = 0

and the result is proved.
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