Pointwise convergence of complex Fourier series

Let $f(x)$ be a periodic function with period $2 I$ defined on the interval $[-l, I]$. The complex Fourier coefficients of $f($ x) are

$$
c_{n}=\frac{1}{2 l} \int_{-l}^{l} f(s) e^{-i n \pi s / l} \mathrm{~d} s
$$

This leads to a Fourier series representation for $f(x)$

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n \pi x / l}
$$

We have two important questions to pose here.

1. For a given x, does the infinite series converge?
2. If it converges, does it necessarily converge to $f(x)$?

We can begin to address both of these issues by introducing the partial Fourier series

$$
f_{M}(x)=\sum_{n=-N}^{N} c_{n} e^{i n \pi x / l}
$$

In terms of this function, our two questions become

1. For a given x, does $\lim _{N \rightarrow \infty} f_{N}(x)$ exist?
2. If it does, is $\lim _{N \rightarrow \infty} f_{N}(x)=f(x)$?

The Dirichlet kernel

To begin to address the questions we posed about $f_{M}(x)$ we will start by rewriting $f_{M}(x)$. Initially, $f_{M}(x)$ is defined by

$$
f_{M}(x)=\sum_{n=-N}^{N} c_{n} e^{i n \pi x / l}
$$

If we substitute the expression for the Fourier coefficients

$$
c_{n}=\frac{1}{2 l} \int_{-I}^{l} f(s) e^{-i n \pi s l l} \mathrm{~d} s
$$

into the expression for $f_{M}(x)$ we obtain

$$
\begin{gathered}
f_{\mathcal{M}}(x)=\sum_{n=-N}^{N}\left(\frac{1}{2 l} \int_{-I}^{l} f(s) e^{-i n \pi s / l} \mathrm{~d} s\right) e^{i n \pi x / I} \\
=\int_{-I}^{I}\left(\frac{1}{2} \sum_{n=-N}^{N}\left(e^{-i n \pi s / l} e^{i n \pi x / I}\right)\right) f(s) \mathrm{d} s
\end{gathered}
$$

$$
=\int_{-I}^{l}\left(\frac{1}{21} \sum_{n=-N}^{N} e^{i n \pi(x-s) / l}\right) f(s) \mathrm{d} s
$$

The expression in parentheses leads us to make the following definition. The Dirichlet kernel is the function defined as

$$
K_{M}(x)=\frac{1}{2 I} \sum_{n=-N}^{N} e^{i n \pi x / l}
$$

In terms of the Dirichlet kernel, we can write the expression for $f_{N}(x)$ as

$$
f_{M}(x)=\int_{-1}^{l} K_{\Lambda}(x-s) f(s) \mathrm{d} s
$$

Some properties of the Dirichlet kernel

By rewriting the expression for the Dirichlet kernel, we can recogize that the Dirichlet kernel is actually a geometric series.

$$
K_{\Lambda}(x)=\frac{1}{2 I} \sum_{n=-N}^{N} e^{i n \pi x / l}=\frac{1}{21} \sum_{n=-N}^{N}\left(e^{i \pi x / I}\right)^{n}
$$

Because this is a geometric series, it can be summed explicitly.

$$
\begin{gathered}
K_{\Lambda}(x)=\frac{1}{2 I} \sum_{n=-N}^{N}\left(e^{i \pi x / I}\right)^{n}=\frac{1}{2 l} \frac{\left(e^{i \pi x / l}\right)^{N+1}-\left(e^{i \pi x / l}\right)^{-N}}{e^{i \pi x / l}-1} \\
=\frac{1}{2 I} \frac{\left(e^{i \pi x / l}\right)^{N+1 / 2}-\left(e^{i \pi x / l}\right)^{-(N+1 / 2)}}{\left(e^{i \pi x / l}\right)^{1 / 2}-\left(e^{i \pi x / I}\right)^{-1 / 2}} \\
=\frac{1}{2 l} \frac{\left(e^{i \pi x / l}\right)^{N+1 / 2}-\left(e^{i \pi x / l}\right)^{-(N+1 / 2)}}{e^{i \pi x /(2 I)}-e^{-i \pi x /(2 I)}} \\
=\frac{\sin \left(\frac{(2 N+1) \pi x}{2 l}\right)}{2 I \sin \left(\frac{\pi x}{2 I}\right)}
\end{gathered}
$$

Some explicit integrations show that

$$
\int_{-1}^{0} K_{M}(x) \mathrm{d} x=\int_{0}^{1} K_{M}(x) \mathrm{d} x=\frac{1}{2}
$$

Convolutions

The integral we saw earlier

$$
f_{M}(x)=\int_{-I}^{I} K_{M}(x-s) f(s) \mathrm{d} s
$$

is an example of what is known as a convolution integral. Specifically, if $g(x)$ and $h(x)$ are two periodic functions with period $2 I$ defined on $[-I, I]$ the convolution of g and h is defined by

$$
\left(g^{*} h\right)(x)=\int_{-1}^{l} g(x-s) h(s) \mathrm{d} s
$$

Here is an important property of convolution integrals. From the definition we have that

$$
\left(g^{*} h\right)(x)=\int_{-1}^{l} g(x-s) h(s) \mathrm{d} s
$$

If we introduce a change of variables $z=x-s$ in the integral, the integral becomes

$$
\int_{x+1}^{x-I} g(z) h(x-z)(-1) \mathrm{d} z=\int_{x-I}^{x+1} g(z) h(x-z) \mathrm{d} z
$$

Since both g and h are assumed to be periodic with the same period, if we shift the range of integration by a factor of x, the integral has the same value.

$$
\int_{x-I}^{x+1} g(z) h(x-z) \mathrm{d} z=\int_{-I}^{I} g(z) h(x-z) \mathrm{d} z
$$

Replacing the variable z with s in the final integral gives

$$
\left(g^{*} h\right)(x)=\int_{-1}^{l} g(x-s) h(s) \mathrm{d} s=\int_{-1}^{l} g(s) h(x-s) \mathrm{d} s=\left(h^{*} g\right)(x)
$$

This is an important symmetry property of the convolution of periodic functions.
For our present purposes, because both the Dirichlet kernel $K_{\Lambda}(x)$ and our function $f(x)$ are periodic, we have that

$$
f_{\Lambda}(x)=\int_{-I}^{l} K_{M}(x-s) f(s) \mathrm{d} s=\left(K_{N}^{*} f\right)(x)=\left(f^{*} K_{N}\right)(x)=\int_{-1}^{l} K_{M}(s) f(x-s) \mathrm{d} s
$$

This latter form is a more convenient form to work with.

The pointwise convergence theorem

A function $f(x)$ is said to be piecewise smooth on an interval $[-1, I]$ if the function has at most a finite number of isolated discontinuities in that interval, and at each point where the function is discontinuous it has a finite limit on either side of the discontinuity. That is,

$$
\begin{aligned}
& \lim _{s \rightarrow x^{-}} f(s)=f(x-) \\
& \lim _{s \rightarrow x^{+}} f(s)=f(x+)
\end{aligned}
$$

both exist and are finite.

We are now in a position to state

Pointwise convergence theorem for complex Fourier series

If $f(x)$ is a piecewise smooth periodic function defined on the interval $[-1, I]$ then

$$
\lim _{N \rightarrow \infty} f_{N}(x)=f(x)
$$

whereever $f(x)$ is continuous. At points where $f(x)$ has a jump discontinuity,

$$
\lim _{N \rightarrow \infty} f_{N}(x)=\frac{1}{2}(f(x-)+f(x+))
$$

Proof We will show a somewhat stronger pair of results.

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \int_{-I}^{0} K_{M}(s) f(x-s) \mathrm{d} s=\frac{1}{2} f(x+) \\
& \lim _{N \rightarrow \infty} \int_{0}^{l} K_{M}(s) f(x-s) \mathrm{d} s=\frac{1}{2} f(x-)
\end{aligned}
$$

both proofs are similar, so we will only show the proof of the second equality.
To start with, we will use a fact about the Dirichlet kernel I mentioned above.

$$
\int_{0}^{l} K_{\Lambda}(s) \mathrm{d} s=\frac{1}{2}
$$

Using this gives us

$$
\frac{1}{2} f(x-)=\int_{0}^{l} f(x-) K_{M}(s) \mathrm{d} s
$$

Thus, to show that

$$
\lim _{N \rightarrow \infty} \int_{0}^{l} K_{M}(s) f(x-s) \mathrm{d} s=\frac{1}{2} f(x-)
$$

we can instead prove the equivalent

$$
\lim _{N \rightarrow \infty} \int_{0}^{l} K_{\Lambda}(s)(f(x-s)-f(x-)) \mathrm{d} s=0
$$

Earlier I showed that

$$
K_{M}(s)=\frac{\sin \left(\frac{(2 N+1) \pi s}{2 I}\right)}{2 I \sin \left(\frac{\pi s}{2 I}\right)}
$$

Substituting this into the integral gives

$$
\lim _{N \rightarrow \infty} \int_{0}^{l} \frac{\sin \left(\frac{(2 N+1) \pi s}{2 I}\right)}{2 I \sin \left(\frac{\pi s}{2 I}\right)}(f(x-s)-f(x-)) \mathrm{d} s=0
$$

or

$$
\lim _{N \rightarrow \infty} \int_{0}^{l} \frac{f(x-S)-f(x-)}{2 I \sin \left(\frac{\pi S}{2 I}\right)} \sin \left(\frac{(2 N+1) \pi s}{2 I}\right) \mathrm{d} s=0
$$

Next, we introduce

$$
F_{(x)}(s)=\frac{f(x-s)-f(x-)}{2 I \sin \left(\frac{\pi s}{2 l}\right)}
$$

To proceed beyond this point we are now going to need a pair of lemmas.

Lemma 1

$$
\lim _{s \rightarrow 0^{+}} F_{(x)}(s)=\lim _{s \rightarrow 0^{+}} \frac{f(x-s)-f(x-)}{2 I \sin \left(\frac{\pi s}{2 I}\right)}=\frac{\lim _{s \rightarrow 0^{+}}\left(-\frac{\mathrm{d} f(x-s)}{\mathrm{d} x}\right)}{\lim _{s \rightarrow 0^{+}}\left(\frac{\pi}{2 I} \cos \left(\frac{\pi s}{2 I}\right)\right)}
$$

Even if x is a point of discontinuity, if we assume that f is piecewise smooth, then

$$
\lim _{s \rightarrow 0^{+}}\left(-\frac{\mathrm{d} f(x-s)}{\mathrm{d} x}\right)
$$

exists and is finite. Thus,

$$
\lim _{s \rightarrow 0^{+}} F_{(x)}(s)=-\frac{\mathrm{d} f(x-)}{\mathrm{d} X}(x)
$$

Lemma 2 (Bessel's Inequality)

If $\left\{\varphi_{N}(s)\right\}$ is a sequence of orthogonal functions defined on $[0, I]$ then for all N and all functions $F(s)$ we have

$$
\sum_{N=0}^{\infty} \frac{\mid\left(F(s),\left.\varphi_{N}(s)\right|^{2}\right.}{\left(\varphi_{M}(s), \varphi_{M}(s)\right)} \leq(F(s), F(s))
$$

Here

$$
(,)
$$

is any inner product for our function space. In practice, this is usually the standard complex inner product

$$
\left(F(s), \varphi_{M}(s)\right)=\int_{0}^{l} F(s) \overline{\varphi_{M}(s)} \mathrm{d} s
$$

We now use these two lemmas to continue with the proof of our main result. We need to prove that

$$
\lim _{N \rightarrow \infty} \int_{0}^{l} F_{(x)}(s) \sin \left(\frac{(2 N+1) \pi s}{2 I}\right) \mathrm{d} s=0
$$

To prove this, we apply Bessel's inequality with $F(s)=F_{(x)}(s)$ and $\varphi_{N}(s)=\sin ((2 N+1) \pi s / 2 I)$. The first thing to note here is that the sequence of functions

$$
\varphi_{M}(s)=\sin \left(\frac{(2 N+1) \pi s}{2 l}\right)
$$

is in fact a sequence of orthogonal functions defined on the interval $[0, I]$.
Now consider the inner product

$$
(F(s), F(s))=\left(F_{(x)}(s), F_{(x)}(s)\right)=\int_{0}^{l}\left(F_{(x)}(s)\right)^{2} \mathrm{~d} s
$$

The only thing that could keep this integral from being finite is a singularity at $s=0$. By lemma 1 above,

$$
\lim _{s \rightarrow 0^{+}} F_{(x)}(s)=-\frac{\mathrm{d} f}{\mathrm{~d} X}(x-)
$$

so there is no such singularity. Thus, the right hand side in the inequality

$$
\sum_{N=0}^{\infty} \frac{\left(F_{(x)}(s), \varphi_{M}(s)\right)}{\left(\varphi_{M}(s), \varphi_{M}(s)\right)} \leq\left(F_{(X)}(s), F_{(x)}(s)\right)
$$

must be finite, and hence the sum on the left must converge.
For that sum to converge, a necessary condition is that

$$
\lim _{N \rightarrow \infty} \frac{\mid\left(F_{(x)}(s),\left.\varphi_{M}(s)\right|^{2}\right.}{\left(\varphi_{M}(s), \varphi_{M}(s)\right)}=0
$$

Since

$$
\begin{gathered}
\left(\varphi_{N}(s), \varphi_{N}(s)\right)=\int_{0}^{l}\left(\sin \left(\frac{(2 N+1) \pi s}{2 l}\right)\right)^{2} \mathrm{~d} s \\
=\frac{\frac{1}{2}(\sin (2 N \pi)+2 N \pi+\pi) l}{2 N \pi+\pi} \\
=\frac{l}{2}
\end{gathered}
$$

saying that

$$
\lim _{N \rightarrow \infty} \frac{\mid\left(F_{(x)}(s),\left.\varphi_{M}(s)\right|^{2}\right.}{\left(\varphi_{M}(s), \varphi_{M}(s)\right)}=0
$$

means that we must have

$$
\lim _{N \rightarrow \infty}\left(F_{(x)}(s), \varphi_{N}(s)\right)=0
$$

This translates into the condition that

$$
\lim _{N \rightarrow \infty} \int_{0}^{l} F_{(x)}(s) \sin \left(\frac{(2 N+1) \pi s}{2 l}\right) \mathrm{d} s=0
$$

and the result is proved.

