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Free-space Green's function for the Laplacian

One way to construct a Green's function for the Laplacian in multiple spatial dimensions is to solve
the PDE

-† u = ç(x-y)

with appropriate boundary conditions.

The solution to this equation

u(x) = G(x;y)

is the Green's function for the Laplacian.

Depending on the region ì and the boundary conditions we impose we will of course get different
Green's functions. The simplest scenario is the so-called free-space scenario in which we seek to solve
the PDE on an unbounded spatial region. In that scenario there are no boundary conditions per-se,
but we may want to impose an auxiliary condition on the solution, such as requiring that the
solution be bounded at infinity.

Translational and Rotational Invariance

One key to solving the PDE above simply is to note that the Laplace operator is translation
invariant. That is, if

-† = - Û 2

Ûx1
2 - Û 2

Ûx2
2

in the usual coordinate system and we introduce a change of coordinates

z1 = x1 + y1

z2 = x2 + y2

where y1 and y2 are constants, then in that new coordinate system we have that

-† = - Û 2

Ûz1
2 - Û 2

Ûz2
2

An important consequence of this property is that if ó(x) is a solution of

-† u = f(x)

then ó(x-y) is a solution of

-† u = f(x-y)

This observation is immediately useful to us, because now instead of worrying about how to solve
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-† u = ç(x-y)

we can instead work on solving

-† u = ç(x)

and then replace the solution u(x) with u(x-y) to get the desired G(x;y).

A second observation that will be useful to us is that if the forcing function in the free-space Poisson
equation

-† u = f(x)

is radially symmetric then we can guess that the solution is likewise radially symmetric:

u(x) = ƒ(r)

Using the Laplacian expressed in polar coordinates, this gives that

-† u = - Û 2ƒ(r)
Ûr 2 - 1
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ÛÔ 2 = f(r)

or

- d
2
ƒ(r)
dr 2

- 1
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dƒ(r)
dr

= f(r)

This conveniently reduces the PDE to an ODE. In our case, we need to solve

- d
2
g(r)
dr 2

- 1
r
dg(r)
dr

= ç(r)

Solving for g(r)

One approach to solving this ODE is to try instead to solve

- d
2
g(r)
dr 2

- 1
r
dg(r)
dr

= 0

and see if the solution to that problem just happens to also solve the ODE with the delta function
on the right hand side. One solution to this ODE is

g(r) = c1 ln(r)

Given this, and given the considerations above based on tranlational and rotational symmetry of the
Laplace operator, we would like to advance an educated guess that the free-space Green's function
takes the form
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G(x;y) = c1ln(||x-y||)

Verifying the Green's function

Because the original problem we set out to solve

-† u = ç(x-y)

contains a delta function, we can not verify directly that the proposed solution is a solution by
simply substituting into the equation and simplifying. Instead, we will seek to show that the
proposed solution satisfies the weak form of the PDE.

To construct the weak form, we select an arbitrary test function v(x) and construct

½
ì

(-†u(x))v(x) dx = ½
ì

ç(x-y)v(x) dx = v(y)

On small technical concern here is that we are working on an unbounded region in space. To
eliminate concerns with the convergence of the integral on the left, we might want to start by using
test functions v(x) with bounded support.

The next step is to apply Green's first identity to the integral on the left.

½
ì

(-†u(x))v(x) dx = -½
çì

Ûu(x)
Ûn

v(x) dx + ½
ì

ðu(x)Ýðv(x) dx

Because we are operating on a free space region and we have also assumed that the test function
v(x) has bounded support, the first integral on the right vanishes. Thus we have the weak form of
the PDE

½
ì

ðu(x)Ýðv(x) dx = v(y)

We now attempt to verify that u(x) = c1ln(||x-y||) satisfies this weak form equation. One remaining
technical problem is that

ðu(x) = -c1
x - y

||x - y||2

is singular at x = y. We will work around this problem by introducing a region

ìÈ = {x ý ‰2 | È < ||x - y|| < R}

and demonstrating first that

½
ìÈ

ðu(x)Ýðv(x) dx = -½
ìÈ

c1
x - y

||x-y||2
Ýðv(x) dx = v(y)

If we can show that this is true for all È and all R, we can then take the limit as È œ 0 and R œ ²
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È R È œ 0 R œ ²
to obtain the result we want.

The first step in achieving our result is to apply Green's identity to the integral.

-½
ìÈ

c1
x - y

||x-y||2
Ýðv(x) dx = -½

çìe
v(x)c1

x - y

||x-y||2
Ýn dx + ½

ì
ðÝ

“©©©‘
c1

x - y

||x-y||2
”™™™’
v(x) dx

The second term on the right vanishes because

ðÝ
“©©©‘
c1

x - y

||x-y||2
”™™™’

= 0

This leaves us with only the boundary integral to worry about. The boundary in this case consists of
two circles, ||x-y|| = È and ||x-y|| = R. We can deal with the outer boundary by noting that the test
function v(x) has compact support, so that if we make R large enough v(x) will vanish on that outer
ring.

On the inner ring, we have that

n = - x - y

||x - y ||

so that

x - y

||x-y||2
Ýn = - x - y

||x-y||2
Ý x - y

||x - y ||
= - 1

||x - y ||
= - 1

È

We now have that

-½
ìÈ

c1
x - y

||x - y||2
Ýðv(x) dx = c1

È ½
Se

v(x) dx

For x close to y, we have that v(x) ¦ v(y) and the integral over SÈ devolves to a simple integral of
v(y) over the circle of radius È centered at y.

c1
È ½

Se
v(x) dx ¦ c1

È 2 ¼ È v(y) = c1 2 ¼ v(y)

This is only approximate equality, but in the limit as È œ 0 we will have exact equality. Since our
goal was to get

v(y)= ½
ì

(-†u(x))v(x) dx = - lim
Èœ0

½
ìÈ

c1
x - y

||x - y||2
Ýðv(x) dx = c1 2 ¼ v(y)

We see that this will work if we simply select

c1 = 1
2 ¼
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We have now established that the Green's function for the free-space Laplacian in two dimensions is

G(x;y) = 1
2 ¼

ln(||x-y||)

Green's Function for the Laplacian in Three Dimensions

The argument for three spatial dimensions is similar, except for one key step. A key step in the
argument above for two dimensions was to note that since the delta function is a radially symmetric
function centered at x = y we would do well to do a change of variables to move the origin to y and
then convert to polar coordinates. The argument in three dimensions is similar, except that the form
of the Laplacian in spherical coordinates is a little different. Instead of

-† u = - Û 2u(r,Ô)
Ûr 2 - 1

r
Ûu(r,Ô)

Ûr
- 1

r2
Û 2u(r,Ô)

ÛÔ 2

we have

-† u = - 1
‹2

Û
Û‹

“©©©‘‹
2 Ûu(‹,ƒ,Ô)

Û‹
”™™™’ - 1

‹2 sin(ƒ)
Û

Ûƒ
“©©©‘sin(ƒ) Ûu(‹,ƒ,Ô)

Ûƒ
”™™™’ - 1

‹2 sin2(ƒ)

Û 2u(‹,ƒ,Ô)
ÛÔ 2

Once again we use the argument that the solution must be radially symmetric, i. e., u(‹,ƒ,Ô) = ó(‹),
which reduces the problem to an ODE

- 1
‹2

d
d‹

“©©©‘
‹2 dó(‹)

d‹

”™™™’
= 0, ‹ > 0

This ODE has solution

g(‹) = c1
‹ + c2

By an argument similar to the argument used above, we can show that c1 = 1/4¼ and c2 = 0. Thus,
the free-space Green's function in three dimensions is

G(x;y) = 1
4 ¼ ||x - y||


