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Eigenfunctions of the Laplace Operator on a Rectangular Domain

Consider the Laplace operator

LD u = - † u

defined on a space of functions satisfying Dirichlet boundary conditions on a rectangular region ì =
{x,y| 0 º x º l1 , 0 º y º l2} in ‰2:

u ý { v ý C2[ì] | v(0,y) = v(l1,y) = 0, v(x,0) = v(x,l2) = 0 }

To begin the process of computing eigenfunctions and eigenvalues of this operator we take a cue
from the geometry of the region ì and assume that eigenfunctions take the form

u(x,y) = u1(x) u2(y)

This leads to a solution method known as separation of variables.

Substituting this assumption into the eigenvalue equation

- † u = š u

leads to

- Û 2u1(x) u2(y)
Ûx 2 - Û 2u1(x) u2(y)

Ûy 2 = š u1(x) u2(y)

or

- u2(y) d
2
u1(x)
dx 2

- u1(x) d
2
u2(y)
dy 2

= š u1(x) u2(y)

or

- 1
u1(x)

d
2
u1(x)
dx 2

- 1
u2(y)

d
2
u2(y)
dy 2

= š

Since the first term on the left is independent of y and the second term is independent of x, the only
way for these two terms to always sum to a constant is for each term separately to equal a constant.
We introduce constants Ô1 and Ô2 and demand that

Ô1 + Ô2 = š

- 1
u1(x)

d
2
u1(x)
dx 2

= Ô1
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- 1
u2(y)

d
2
u2(y)
dy 2

= Ô2

This separates the original PDE into a pair of ODEs. The original Dirichlet conditions

u(0,y) = u(l1,y) = 0, u(x,0) = u(x,l2) = 0

also separate cleanly to produce Dirichlet conditions for each of the ODEs:

u1(0) = u1(l1) = 0

u2(0) = u2(l2) = 0

The first ODE

d
2
u1(x)
dx 2

+ Ô1 u1(x) = 0

u1(0) = u1(l1) = 0

has solutions

u1(x) = sin “©©©‘
n ¼
l1

x”™™™’
, n = 1,2,…

which leads to

Ô1 = n2 ¼2

l1
2

The second ODE has solutions

u2(y) = sin “©©©‘
m ¼
l2

y”™™™’
, m = 1,2,…

which leads to

Ô2 = m2 ¼2

l2
2

Thus we see that the eigenfunctions of the original PDE are

u(x) = sin “©©©‘
n ¼
l1

x”™™™’
sin “©©©‘

m ¼
l2

y”™™™’

with associated eigenvalues
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š = Ô1 + Ô2 = n2 ¼2

l1
2

+ m2 ¼2

l2
2

Solving the Poisson Equation with Dirichlet Boundary Conditions

As an application of the ideas we developed above we now solve an instance of the Poisson equation
with Dirichlet boundary conditions on ì = {x,y| 0 º x º l1 , 0 º y º l2}:

- † u = f(x,y)

As usual, we start by assuming that the solution is a sum over eigenfunctions. Since the
eigenfunctions are indexed by two integer indices, we have to sum over all possible values of these
two indices:

u(x,y) = ¾
m = 1

²
¾

n = 1

²
an,m sin “©©©‘

n ¼
l1

x”™™™’
sin “©©©‘

m ¼
l2

y”™™™’

We likewise assume that the forcing function can be written as a sum of eigenfunctions

f(x,y) = ¾
m = 1

²
¾

n = 1

²
cn,m sin “©©©‘

n ¼
l1

x”™™™’
sin “©©©‘

m ¼
l2

y”™™™’

where the double Fourier sine coefficients of f(x,y) can be computed via

cn,m = 2
l2

2
l1

½ l2
0 ½ l1

0 f(x,y)sin “©©©‘
n ¼
l1

x”™™™’
sin “©©©‘

m ¼
l2

y”™™™’
d x dy

(It is interesting to note here that this method works even in cases in which the forcing function
f(x,y) itself can not be written as the product of a function that depends only on x and a function
that depends only on y.)

Substituting all of this into the PDE gives

- † u = ¾
m = 1

²
¾

n = 1

² “©©©‘
n2 ¼2

l1
2

+ m2 ¼2

l2
2

”™™™’
an,m sin “©©©‘

n ¼
l1

x”™™™’
sin “©©©‘

m ¼
l2

y”™™™’

= f(x,y) = ¾
m = 1

²
¾

n = 1

²
cn,m sin “©©©‘

n ¼
l1

x”™™™’
sin “©©©‘

m ¼
l2

y”™™™’

From this we read off that

an,m = cn,m

n2 ¼2

l1
2

+ m2 ¼2

l2
2

A time dependent problem
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We now consider an example involving the wave equation on a rectangular region ì = {x,y| 0 º x º
l1 , 0 º y º l2}

Û 2u
Ût 2 - c2 †u = 0

u(x,y,0) = ó(x,y)

Ûu
Ût

(x,y,0) = 0

u(0,y,t) = u(l1,y,t) = 0, u(x,0,t) = u(x,l2,t) = 0

We assume that solutions take the form

u(x,y,t) = ¾
m = 1

²
¾

n = 1

²
an,m(t) sin “©©©‘

n ¼
l1

x”™™™’
sin “©©©‘

m ¼
l2

y”™™™’

and that the initial function can be written as a combination of eigenfunctions

ó(x,y) = ¾
m = 1

²
¾

n = 1

²
cn,m sin “©©©‘

n ¼
l1

x”™™™’
sin “©©©‘

m ¼
l2

y”™™™’

where

cn,m = 2
l2

2
l1

½ l2
0 ½ l1

0 ó(x,y)sin “©©©‘
n ¼
l1

x”™™™’
sin “©©©‘

m ¼
l2

y”™™™’
d x dy

The initial condition leads immediately to

u(x,y,0) = ¾
m = 1

²
¾

n = 1

²
an,m(0) sin “©©©‘

n ¼
l1

x”™™™’
sin “©©©‘

m ¼
l2

y”™™™’
= ó(x,y) = ¾

m = 1

²
¾

n = 1

²
cn,m sin “©©©‘

n ¼
l1

x”™™™’
sin “©©©‘

m ¼
l2

y”™™™’

Ûu
Ût

(x,y,0) = ¾
m = 1

²
¾

n = 1

²
dan,m

dt
(0) sin “©©©‘

n ¼
l1

x”™™™’
sin “©©©‘

m ¼
l2

y”™™™’
= 0

or

an,m(0) = cn,m

dan,m

dt
(0) = 0

Substituting the expression for u(x,y,t) into the PDE gives

¾
m = 1

²
¾

n = 1

² d
2
an,m(t)

dt 2 sin “©©©‘
n ¼
l1

x”™™™’
sin “©©©‘

m ¼
l2

y”™™™’
+
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c2 ¾
m = 1

²
¾

n = 1

² “©©©‘
n2 ¼2

l1
2

+ m2 ¼2

l2
2

”™™™’
an,m(t) sin “©©©‘

n ¼
l1

x”™™™’
sin “©©©‘

m ¼
l2

y”™™™’
= 0

or

d
2
an,m(t)

dt 2 + c2 “©©©‘
n2 ¼2

l1
2

+ m2 ¼2

l2
2

”™™™’
an,m(t) = 0

We can now solve the problem by solving the family of ODEs

d
2
an,m(t)

dt 2 + c2 “©©©‘
n2 ¼2

l1
2

+ m2 ¼2

l2
2

”™™™’
an,m(t) = 0

an,m(0) = cn,m

dan,m

dt
(0) = 0

Neumann Boundary Conditions

Consider now the Poisson equation

- † u(x,y) = f(x,y)

on a rectangular spacial region ì = {x,y| 0 º x º l1 , 0 º y º l2} with Neumann boundary
conditions:

u ý { v ý C2[ì] | Ûv
Ûx

(0,y) = Ûv
Ûx

(l1,y) = 0, Ûv
Ûy

(x,0) = Ûv
Ûy

(x,l2) = 0 }

An application of the divergence theorem gives us that

½
ì

f(x) dx = - ½
ì

† u(x) dx = - ½
ì

ðÝðu(x) dx = - ½
çì

ðu(x)Ýndx = -½
çì

Ûu
Ûn

dx = 0

which leads to a compatibility condition for this problem.

½
ì

f(x) dx = 0

To solve this problem, we start by assuming once again that we can solve for eigenfunctions of the
differential operator by the method of separation of variables.

u(x,y) = u1(x) u2(y)

Following reasoning similar to that we applied above, we see again that the problem separates into
two sets of ODEs for u1(x) and u2(x).



6

The first ODE

d
2
u1(x)
dx 2

+ Ô1 u1(x) = 0

du1

dx
(0) = du1

dx
(l1) = 0

has solutions

u1(x) = cos “©©©‘
n ¼
l1

x”™™™’
, n = 0,1,2,…

which leads again to

Ô1 = n2 ¼2

l1
2

Likewise, the second ODE has solutions

u2(y) = cos “©©©‘
m ¼
l2

y”™™™’
, m = 0,1,2,…

which leads again to

Ô2 = m2 ¼2

l2
2

The novel aspect in this case is the presence of 0 eigenvalues, which slightly complicates the task of
forming Fourier expansions. For example, to compute the Fourier coefficients of the forcing function
f(x,y) we have to consider the n = 0 and m = 0 cases separately.

The first case

c0,0 = 2
l2

2
l1

½ l2
0 ½ l1

0 f(x,y) d x dy

will vanish since f(x,y) has to satisfy the compatibility condition.

The next cases are

c0,m = 2
l2

2
l1

½ l2
0 ½ l1

0 f(x,y)cos “©©©‘
m ¼
l2

y”™™™’
d x dy

cn,0 = 2
l2

2
l1

½ l2
0 ½ l1

0 f(x,y)cos “©©©‘
n ¼
l1

x”™™™’
d x dy

and the general case is
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cn,m = 2
l2

2
l1

½ l2
0 ½ l1

0 f(x,y)cos “©©©‘
n ¼
l1

x”™™™’
cos “©©©‘

m ¼
l2

y”™™™’
d x dy

To solve the Poisson equation we now assume that the solution takes the form

u(x,y) = ¾
n=1

²
an,0 cos “©©©‘

n ¼
l1

x”™™™’
+ ¾

m=1

²
a0,mcos “©©©‘

m ¼
l2

y”™™™’
+ ¾

m = 1

²
¾

n = 1

²
an,mcos “©©©‘

n ¼
l1

x”™™™’
cos “©©©‘

m ¼
l2

y”™™™’

To solve for the coefficients an,m we solve

n2 ¼2

l1
2

an,0 = cn,0

m2 ¼2

l2
2

a0,m = c0,m

“©©©‘
n2 ¼2

l1
2

+ m2 ¼2

l2
2

”™™™’
an,m = cn,m


