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Finite Element Method for Sturm-Liouville Problems

Consider a Sturm-Liouville boundary value problem with Dirichlet boundary conditions on some

interval.
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+ R(x) u(x) = š w(x) u(x)

u(a) = u(b) = 0

We can apply the finite element method to this problem in the usual way by first constructing a

weak form for the equation.
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By splitting the integral on the left into two distinct integrals and then applying integration by

parts to the first of the two integrals we obtain
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Since the test functions satisfy Dirichlet conditions, the first term on the left will vanish leaving us

with
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a š w(x) u(x) v(x) d x

We now proceed as usual by introducing a family of spike functions {ƒj(x)} defined on [a,b]. We
assume that an approximate solution can be written
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If we substitute this into the weak form and use test functions of the form v(x) = ƒi(x) we obtain
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If we introduce matrices

Ai,j = ½b
a P(x) dƒj(x)

dx
dƒi(x)
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these equations for i = 1 to n can be written as a matrix equation

A u = š M u

To find the desired approximate eigenfunctions and eigenvalues, we simply have to find the

eigenvalues and eigenvectors of the matrix equation

M-1A u = š u

The accompanying Mathematica notebook will show a couple of examples of this process.


