Review for the Second Midterm

The second midterm exam will cover chapter 7 (the wave equation), chapter 8 (method of characteristics), chapter 9 (Green's functions), and section 4.3.3 (Duhamel's principle). Here is a list of topics to review for the midterm

- D'Alembert's method
- Solving the wave equation by Fourier series
- Solving a linear first order PDE by the method of characteristics
- Computing a Green's function by converting a known solution to the Green's function form
- The delta function and the sifting property
- The Heaviside function and its relation to the delta function
- Duhamel's principle
- Computing a Green's function by solving a problem with a delta function as the forcing function

Some Representative Sample Questions

1. The wave equation for a vibrating string

$$
\frac{\partial^{2} u(x, t)}{\partial t^{2}}-c^{2} \frac{\partial^{2} u(x, t)}{\partial x^{2}}=f(x, t)
$$

assumes that vibrating string is not subject to friction. The wave equation for a vibrating string in the presence of friction takes the form

$$
\frac{\partial^{2} u(x, t)}{\partial t^{2}}+\kappa \frac{\partial u(x, t)}{\partial t}-c^{2} \frac{\partial^{2} u(x, t)}{\partial X^{2}}=f(x, t)
$$

Explain how you would solve this equation. Suppose that for this problem we have that $f(x, t)=0, u(0, t)=u(1, t)$ $=0, u(x, 0)=x(1-x), \frac{\partial}{\partial t} u(x, 0)=0$.
2. The string on a piano is 1 meter in length and c is 20 meters per second. The ends of the string are fixed and the string is at rest at time $t=0$. A pianist strikes a key so as to impart a velocity $g(x)$ where

$$
g(x)=\left\{\begin{array}{cc}
10 & 0.6<x<0.7 \\
0 & 0 \leq x<0.6,0.7<x \leq 1
\end{array}\right.
$$

What is the displacement $u(x, t)$ for the string at times $t \geq 0$?
3. Use the method of characteristics to solve

$$
\begin{gathered}
\frac{\partial u(x, y)}{\partial x}-\frac{\partial u(x, y)}{\partial y}+u(x, y)=0 \\
u(x, 0)=\sin x
\end{gathered}
$$

4. Compute a Green's function for the BVP

$$
\begin{gathered}
u^{\prime \prime}(x)+u(x)=f(x) \\
u(0)=u(I)=0
\end{gathered}
$$

by solving the problem

$$
\begin{gathered}
u^{\prime \prime}(x)+u(x)=\delta(x-y) \\
u(0)=u(I)=0
\end{gathered}
$$

5. Develop a Green's function for the wave equation with friction term shown in problem 1.
