First Midterm Exam Samples

1. Consider the differential operator L_{M} defined by

$$
L_{M} u=-\frac{\mathrm{d}^{2} u(x)}{\mathrm{d} x^{2}}
$$

for all functions $u \in C_{M}^{2}[0, l]=\left\{u \in C^{2}[0, l] \mid u(0)=u^{\prime}(l)=0\right\}$. What are the eigenvalues and eigenfunctions of this differential operator?
2. Solve by the method of Fourier series:

$$
\begin{gathered}
\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}=0 \\
u(x, 0)=\left\{\begin{array}{cc}
1 & 0.4 \leq x \leq 0.6 \\
0 & \text { otherwise }
\end{array}\right. \\
u(0, t)=u(1, t)=0
\end{gathered}
$$

3. Explain how to use the finite element method to approximate the solution to the BVP

$$
\begin{gathered}
\left.-\frac{\mathrm{d}}{\mathrm{~d} x} \left\lvert\,\left(1+x^{2}\right) \frac{\mathrm{d} u}{\mathrm{~d} x}(x)\right.\right)=f(x) \\
u(0)=u(1)=0
\end{gathered}
$$

4. Consider this boundary value problem:

$$
\begin{gathered}
-\frac{\mathrm{d}}{\mathrm{~d} x}\left|\left(\left(1+x^{2}\right) \frac{\mathrm{d} u}{\mathrm{~d} x}(x)\right)\right|=f(x) \\
u^{\prime}(0)=u^{\prime}(1)=0
\end{gathered}
$$

Show that the differential operator has a non-trivial null space and that this in turn forces us to demand that $f(x)$ satisfy a special condition for the equation to have a solution. What is that special condition?

