
Similarity Transformations

Definition Two matrices A and B are said to be similar if there exists a nonsingular matrix S such that

B = S-1 A S

Theorem A matrix A is similar to a diagonal matrix D if and only if A has n linearly independent
eigenvectors. In this case D = S-1 A S where the columns of S are the eigenvectors of A and the diagonal
entries of D are the corresponding eigenvectors of A.

An important observations about similarity transformations is that they can be composed. For example,
if A is similar to B and B is similar to C, then A is similar to C:

B = S1
-1 A S1

C = S2
-1 B S2 = S2

-1 S1
-1 A S1 S2 = (S1 S2)-1

A (S1 S2)
This suggests a systematic strategy for finding all of the eigenvalues and eigenvectors of a matrix A: we
seek a sequence of similarity transformations that systematically transform the original A into a diagonal
matrix D. According the theorem above the diagonal entries of D will end up being the eigenvalues of A
and the matrix that results from multiplying out the product of all of the similarity matrices will be the
matrix whose columns are the eigenvectors of A.

The Householder transformation

One way to carry out this strategy starts by shooting for an intermediate stage in which we make the
original matrix A similar to a tridiagonal matrix. Once we get to the tridiagonal matrix we get the rest of
the way to diagonal by using an algorithm called the QR decomposition.

To get from the original A to a tridiagonal B we apply a series of applications of a Householder
transformation. The following theorem sets up this transformation:

Definition If w is a vector whose l2 norm is 1 the matrix

P = I - 2 w wt

is called a Householder transformation.

Theorem A Householder matrix P is symmetric and orthogonal, so P-1 = Pt = P.

One the first round of the process we seek a vector w(1) and associated transformation matrix P(1) that
has the effect of turning A into a matrix A(1) that has 0s in its first column from its third row to the last
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row. If the original A is symmetric the transformation will also produce 0s in the first row of the new
matrix from the third column to the last column.

The textbook shows how to compute the correct w(1): the result is summarized by

α = -sgn(a21) (∑
j = 2

n

aj1
2)

1/2

r = (2
1 α2 -

2
1 a21 α)

1/2

w(1)
1 = 0

w(1)
2 =

2 r
a21 - α

w(1)
j =

2 r
aj1 for j = 3, …, n

This transforms A into A(2). The general step that transforms A(k) into A(k+1) uses a vector w(k) whose
components are computed by

α = -sgn(a(k)
k+1,k) ( ∑

j = k+1

n

a(k)
j,k

2)
1/2
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2
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k = 0
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j =
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j,k for j = k+2, …, n

After a series of Householder transformations we will have converted our original A into a tridiagonal
A(n).

The QR method

The QR method is a similarity transformation that seeks to bring a symmetric, tridiagonal matrix closer
to being a pure diagonal matrix.
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The QR method starts with the concept of a rotation matrix. A rotation matrix P is a matrix that looks
mostly like an identity matrix, with the exception of the entries Pi,i Pi,i+1, Pi+1,i, and Pi+1,i+1, which take
the form

cos θ
-sin θ

sin θ
cos θ

The value of the parameter θ is selected to cause the entry in row i+1 and column i of the product P A to
vanish. By multiplying an original matrix A by a series of rotation matrices Pi we can produce a new
matrix R whose below diagonal entries are all 0.

What makes all of this interesting to us is that we can turn this process into a similarity transformation:

R = Pn-1 Pn-2 ⋯ P2 P1 A = Q-1 A

R Q = Q-1 A Q

Since rotation matrices are orthogonal matrices we can easily compute the matrix Q:

Q = (Pn-1 Pn-2 ⋯ P2 P1)-1
= P1

t P2
t ⋯ Pn-2

t Pn-1
t

After a typical round of the QR method we will end up transforming our original matrix to a new matrix
that is closer to being diagonal. In the limit of a large number of iterations of the method we get a
diagonal matrix whose diagonal entries are the eigenvalues of the original matrix A.

Accelerating convergence

One final problem with the QR method is that although the off-diagonal entries of the matrix converge to
0, they may do so slowly. Furthermore, the rate at which the off-diagonal entry Aj+1,j converges to 0
affects the rate at which the diagonal entry Aj,j converges to the eigenvalue λj. It turns out that the rate at
which Aj+1,j converges to 0 is proportional to |λj/λj-1|. (Here we are assuming that the eigenvalues have
been ordered in order of decreasing absolute value.)

If, for example, the ratio is |λn/λn-1| is not small enough, we can employ a shifting trick to modify the
eigenvalues of A to get a better ratio. In a shifting trick we introduce a factor σ and replace A with the
matrix

A - σ I

The new matrix will have eigenvalues equal to λj - σ, so we will want to select σ to make the ratio
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λn-1 - σ
λn - σ

small. The book says that a commonly used strategy is to compute the eigenvalues of the small matrix

An-1,n-1
An,n-1

An-1,n
An,n

and then select the eigenvalue of this matrix that is closest to An,n in absolute value and then set σ equal
to that eigenvalue.

After computing Q and R for the shifted matrix we then make the new matrix be

R Q + σ I

This final step undoes the shift and restores the eigenvalues of the matrix back to their original values.
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