
The power method

The power method is an iterative algorithm designed to estimate the largest eigenvalue λ1 of an n by n
matrix A along with its associated eigenvector. The method starts with the following assumptions:

1. A has a complete set of real eigenvalues λ1, λ2, …, λn and λ1 is the largest eigenvalue
in absolute value.

2. A has a complete set of associated eigenvectors v(1), v(2), …, v(n) and these
eigenvectors are mutually perpendicular.

The method starts with the observation that any vector x can be written as a linear combination of the
eigenvectors of A:

x =∑
j = 1

n

βj v(j)

Multiplying both sides of this equation by A gives us

A x =∑
j = 1

n

βj A v(j) =∑
j = 1

n

βj λj v(j)

Hitting both sides with A k times gives us

Ak x =∑
j = 1

n

βj Ak v(j) =∑
j = 1

n

βj λj
k v(j)

Factoring out λ1
k from the last sum gives us

Ak x = λ1
k∑

j = 1

n

βj
λi

k

λj
k

v(j)

Since λ1 is the largest eigenvalues, the ratios in the sum for j > 1 go to 0 in the limit as k gets very large:

lim
k→∞

Ak x = lim
k→∞

λ1
k β1 v(1)

If we could find a way to cancel out the λ1
k β1 terms in this expression we would have a way to develop

an estimate for v(1). Once we have that estimate we can multiply that vector by A to get an estimate for
the eigenvalue λ1.

To implement this strategy I am going to compute a sequence of vectors x(i). The first vector in the
sequence, x(0) is chosen arbitrarily. To get subsequent vectors in the sequence I do the following:
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1. Let x(i+1) = (A x(i))/||A x(i)||2

2. Let m be chosen that x(i)m is the largest component in x(i) by absolute value. Let μi be
the mth component of A x(i) divided by x(i)m.

We repeat these basic steps until the difference between successive x(i) vectors in the l2 norm falls below
some preset tolerance. The sequence of x(i) vectors we generate will approach v(1) in the limit as i gets
large, and the sequence of μi values will approach λ1 in the limit as i gets large.

We can get even better estimates for both λ1 and v1 by the following two tricks:

1. The sequence of μ values generated by the algorithm converges linearly to λ1. We can
use Aitken's Δ2 method to accelerate this convergence and get an even better estimate
for λ1.

2. Once we have an estimate for λ1 we can find a vector v that solves the equation (A - λ1
I) v = 0 by Gauss elimination. That vector is an even better estimate for the first
eigenvector v(1).

Wielandt deflation

Now that we have a method that can estimate the largest eigenvalue of a matrix along with its associated
eigenvector, what about the remaining eigenvalues and eigenvectors?

What we want is a way to "factor out" this first eigenvalue and eigenvector from the matrix to get a
smaller matrix whose eigenvalues and eigenvectors are the remaining eigenvalues and eigenvectors of A.
It turns out that this is actually possible: to do this select we introduce the new matrix

B = A - λ1 v(1) xt

where the vector x is chosen to satisfy xt v(1) = 1.

What this does for us is given by the following theorem:

Theorem Suppose that λ1, λ2, …, λn are eigenvalues of a matrix A with associated eigenvectors v(1), v(2),
…, v(n) and that the vector x is chosen to satisfy xt v(1) = 1. Then the matrix

B = A - λ1 v(1) xt

has eigenvalues 0, λ2, …, λnwith associated eigenvectors v(1), w(2), …, w(n) with

v(i) = (λi - λ1) w(i) + λ1 (xt w(i)) v(1)

There are many ways to choose an appropriate vector x to satisfy the xt v(1) = 1 condition. In the
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Wielandt deflation method we choose x to be the ith column of A divided by λ1 v(1)i where i is chosen so
that the component v(1)i of v(1) is nonzero.

Typically we choose i to be 0. After forming the new matrix B we will find that the first row of B
consists of all 0s: this is consistent with the theorem's prediction that one of the eigenvalues of B is 0. If
we then remove the first row and first column of B to form a smaller matrix B′ we can use the power
method outlined above to find the largest eigenvalue of B′ and its associated eigenvector w(2)′. We can
then reinflate the vector w(2)′ into an eigenvector w(2) of B by simply adding a 0 element to the front of
the vector. Once we have computed w(2) we can use the formula from the theorem to compute v(2).

By repeatedly running the deflation process and the power method we can compute a full sequence of
eigenvalues and eigenvectors for the original matrix A.

The only downside to this iterative procedure is that roundoff errors are going to degrade our estimates
for the eigenvalues and eigenvectors as we move down the list. To avoid this problem we are going to
introduce a completely new strategy in sections 9.4 and 9.5.

3


