The residual again

The residual is our method of judging how good a potential solution $\tilde{\mathbf{x}}$ of a system $A \mathbf{x}=\mathbf{b}$ actually is. We compute

$$
\mathbf{r}=\mathbf{b}-A \tilde{\mathbf{x}}
$$

which gives us a measure of how good or bad $\tilde{\mathbf{x}}$ is as a potential solution.
One obvious complication of this idea is that a small residual does not necessarily mean that we are making a small mistake. A complicating factor is that in the original equation $A \mathbf{x}=\mathbf{b}$ the vector \mathbf{b} on the right hand side establishes a natural scale for the problem. If $\|\mathbf{b}\|$ is large, we would expect solution vectors \mathbf{x} to have similarly large norms. Likewise, if $\|\mathbf{b}\|$ is small, we would expect \mathbf{x} to have a correspondingly smaller norm. The same reasoning applies to residuals. If $\|\mathbf{b}\|$ and $\|\mathbf{x}\|$ are both small, we would expect a typical residual \mathbf{r} to have a small norm as well. In that case, simply having an \mathbf{r} with small norm may not be sufficient. What matters more is the size of the norm $\|\mathbf{r}\|$ relative to the natural scale induced on the problem by \|bll. Likewise, what matters more to us than the size of the actual error $\|\mathbf{x}-\tilde{\mathbf{x}}\|$ is the relative error

$\|\mathbf{x}\|$
The next natural question to ask is what is the relationship between

$$
\frac{\|\mathbf{r}\|}{\|\mathbf{b}\|}
$$

which we can measure, and

$$
\frac{\|\mathbf{x}-\tilde{\mathbf{x}}\|}{\|\mathbf{x}\|}
$$

which gives us a true measure of the size of the error? The following theorem gives an answer.
Theorem Suppose that $\tilde{\mathbf{x}}$ is an approximate solution of the system $A \mathbf{x}=\mathbf{b}, A$ is non-singular, and \mathbf{r} is the residual vector associated with $\tilde{\mathbf{x}}$. Then, for any natural norm,

$$
\|\mathbf{x}-\tilde{\mathbf{x}}\| \leq\|\mathbf{r}\|\left\|A^{-1}\right\|
$$

and if $\mathbf{x} \neq \mathbf{0}$ and $\mathbf{b} \neq \mathbf{0}$,

$$
\frac{\|\mathbf{x}-\tilde{\mathbf{x}}\|}{\|\mathbf{x}\|} \leq K(A) \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|}
$$

where

$$
K(A)=\|A\|\left\|A^{-1}\right\|
$$

is the condition number associated with the matrix A.

Proof From the definition of \mathbf{r} we have

$$
\begin{gathered}
\mathbf{r}=\mathbf{b}-A \tilde{\mathbf{x}}=A \mathbf{x}-A \tilde{\mathbf{x}} \\
\mathbf{x}-\tilde{\mathbf{x}}=A^{-1} \mathbf{r}
\end{gathered}
$$

taking norms on both sides and using the definition of the matrix norm of A gives

$$
\begin{equation*}
\|\mathbf{x}-\tilde{\mathbf{x}}\|=\left\|A^{-1} \mathbf{r}\right\| \leq\left\|A^{-1}\right\|\|\mathbf{r}\| \tag{1}
\end{equation*}
$$

We also have

$$
\begin{gather*}
\mathbf{b}=A \mathbf{x} \\
\|\mathbf{b}\|=\|A \mathbf{x}\| \leq\|A\|\|\mathbf{x}\| \\
\frac{1}{\|\mathbf{x}\|} \leq \frac{\|A\|}{\|\mathbf{b}\|} \tag{2}
\end{gather*}
$$

Multiplying inequality (1) by (2) gives

$$
\|\mathbf{x}-\tilde{\mathbf{x}}\| \frac{1}{\|\mathbf{x}\|} \leq\left\|A^{-1}\right\|\|\mathbf{r}\| \frac{\|A\|}{\|\mathbf{b}\|}
$$

or

$$
\frac{\|\mathbf{x}-\tilde{\mathbf{x}}\|}{\|\mathbf{x}\|} \leq\|A\|\left\|A^{-1}\right\| \frac{\|\mathbf{r}\|}{\|\mathbf{l}\|}
$$

Note In cases where the condition number $K(A)$ is large, a small relative residual

$$
\frac{\|\mathbf{r}\|}{\|\mathbf{b}\|}
$$

can correspond to a large relative error

$$
\frac{\|\mathbf{x}-\tilde{\mathbf{x}}\|}{\|\mathbf{x}\|}
$$

thus making the residual less useful as a predictor of success.
Since the theorem is valid for any natural norm, in most applications it suffices to use the norm that makes it easiest to compute the condition number $K(A)$. The text points out that in the $\left\|\|_{\infty}\right.$ norm the matrix norm $\| A \|_{\infty}$ is easy to estimate:

$$
\|A\|_{\infty}=\max _{1 \leq i \leq n}\left(\left|a_{i, 1}\right|+\left|a_{i, 2}\right|+\cdots+\left|a_{i, n}\right|\right)
$$

Further insight

We can gain some further insight into what is going on here by using another important idea from linear algebra. If the matrix A is a real-valued matrix with n distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ and associated eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$,
\ldots, \mathbf{v}_{n} then any vector \mathbf{v} can be written as a combination of those eigenvectors:

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}
$$

Expressing \mathbf{v} as a combination of eigenvectors makes it easy to see what effect A will have on \mathbf{v} :

$$
\begin{aligned}
& A \mathbf{v}=A\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}\right) \\
& =c_{1} A \mathbf{v}_{1}+c_{2} A \mathbf{v}_{2}+\cdots+c_{n} A \mathbf{v}_{n} \\
& =c_{1} \lambda_{1} \mathbf{v}_{1}+c_{2} \lambda_{2} \mathbf{v}_{2}+\cdots+c_{n} \lambda_{n} \mathbf{v}_{n}
\end{aligned}
$$

Note that the eigenvectors are effectively rescaling the contributions from the various vectors \mathbf{v}_{j}. If λ_{j} is large in absolute value for some j, the contribution due to the term $c_{j} \mathbf{v}_{j}$ grows in importance after multiplying by A. Likewise, if λ_{j} is small in absolute value for some j, the contribution due to the term $c_{j} \mathbf{v}_{j}$ shrinks in importance after multiplying by A.
Now consider what happens to the norm $\|\mathbf{x}-\tilde{\mathbf{x}}\|$ as we pass from $\|\mathbf{x}-\tilde{\mathbf{x}}\|$ to $\|A \mathbf{x}-A \tilde{\mathbf{x}}\|=\|\mathbf{r}\|$. Suppose $\mathbf{x}-\tilde{\mathbf{x}}$ just happens to be strongly aligned with some eigenvector of A.

$$
\begin{gathered}
\mathbf{x}-\tilde{\mathbf{x}}=c_{j} \mathbf{v}_{j} \\
\mathbf{r}=A \mathbf{x}-A \tilde{\mathbf{x}}=A\left(c_{j} \mathbf{v}_{j}\right)=c_{j} \lambda_{j} \mathbf{v}_{j}
\end{gathered}
$$

Taking norms gives us

$$
\|\mathbf{r}\|=\left\|c_{j} \lambda_{j} \mathbf{v}_{j}\right\|=\left|\lambda_{j}\right|\left\|c_{j} \mathbf{v}_{j}\right\|=\left|\lambda_{j}\right|\|\mathbf{x}-\tilde{\mathbf{x}}\|
$$

In the first scenario, the eigenvalue λ_{j} is large in absolute value. In that case, a large $\|\mathbf{r}\|$ corresponds to a small $\| \mathbf{x}$ $\tilde{\mathbf{x}} \|$. In the second scenario, the eigenvalue λ_{j} is small in absolute value. In that case, a small $\|\mathbf{r}\|$ can corresponds to a large $\|\mathbf{x}-\tilde{\mathbf{x}}\|$.

The bottom line here is that having one eigenvalue of A be small relative to the other eigenvalues of A can lead to the bad scenario of a small residual matched with a large relative error. That is exactly what the condition number $K(A)$ captures. It turns out that the condition number $K(A)$ is the ratio of the largest eigenvalue of A to the smallest eigenvalue of A.

The above discussion also shows us that not all errors are equally bad. If we happen to have an error term $\mathbf{x}-\tilde{\mathbf{x}}$ which is aligned with an eigenvector \mathbf{v}_{j} with a relatively large eigenvalue λ_{j} of A, then a small residual really does correspond to a small error. On the other hand if the error term $\mathbf{x}-\tilde{\mathbf{x}}$ is aligned with an eigenvector \mathbf{v}_{j} with a relatively small eigenvalue λ_{j} of A, then a small residual can correspond to a large error.

The method of iterative refinement

Here is one final application of the residual. Suppose we have just solved the system

$$
A \mathbf{x}=\mathbf{b}
$$

by Gauss elimination. Suppose we kept a record of the multipliers we used and can easily construct the L and U matrices for A.

Gauss elimination is subject to round-off errors, so we should not believe that the solution we computed is the exact solution of the system. Instead, we should treat it as an approximate solution $\tilde{\mathbf{x}}$ and apply our usual error analysis. Next, we compute the residual:

$$
\mathbf{r}=\mathbf{b}-A \tilde{\mathbf{x}}
$$

The method of iterative refinement takes this as a starting point and attempts to improve on the solution $\tilde{\mathbf{x}}$ via the following steps.

1. Use the L and U matrices to find an approximate solution $\tilde{\mathbf{y}}$ to the system

$$
A \mathbf{y}=\mathbf{r}
$$

2. Construct the vector

$$
\tilde{\mathbf{x}}+\tilde{\mathbf{y}}
$$

3. Use the latter vector in place of the original $\tilde{\mathbf{x}}$ you computed.

Why is this an improvement? Look at what happens when you multiply $\tilde{\mathbf{x}}+\tilde{\mathbf{y}}$ by A :

$$
A(\tilde{\mathbf{x}}+\tilde{y})=A \tilde{\mathbf{x}}+A \tilde{\mathbf{y}} \approx A \tilde{\mathbf{x}}+\mathbf{r}=A \tilde{\mathbf{x}}+\mathbf{b}-A \tilde{\mathbf{x}}=\mathbf{b}
$$

The middle relation is only an approximate inequality, because $\tilde{\mathbf{y}}$ is only an approximate solution to

$$
A \mathbf{y}=\mathbf{r}
$$

