The Residual

In section 7.3 we learned that we can solve some linear systems

$$
A x=b
$$

by systematically transforming them into fixed point problems

$$
x=T x+c
$$

and then generating an interated sequence of vectors $\mathbf{x}^{(k)}$ by doing

$$
\mathbf{x}^{(k)}=T \mathbf{x}^{(k-1)}+\mathbf{c}
$$

As we generate this sequence of vectors we would like to know how close we are getting to a limit. A simple way to measure our progress is to note that when we reach a limiting value \mathbf{x} we should have a vector that satisfies the original system:

$$
A x=b
$$

A simple way to measure the "goodness" of an approximation $\mathbf{x}^{(k)}$ is to compute $A \mathbf{x}^{(k)}$ and see how far from \mathbf{b} that is. That idea motivates the following definition.

Definition The residual associated with a candidate solution vector $\mathbf{x}^{(k)}$ is

$$
\mathbf{r}^{(k)}=\mathbf{b}-A \mathbf{x}^{(k)}
$$

Relaxation Methods

Now that we have an objective measure of how good or bad an approximate solution $\mathbf{x}^{(k)}$ is, we can develop methods that target this quantity and seek to shrink it as quickly as possible. For reasons that will be clear in a little while, these methods are known as relaxation methods.

Consider the Gauss-Seidel method.

$$
(D-L) \mathbf{x}^{(k)}=U \mathbf{x}^{(k-1)}+\mathbf{b}
$$

Consider a particular row in the $\mathbf{x}^{(k)}$ vector. Here is how we would go about computing that entry:

$$
D_{i, i}\left(\mathbf{x}^{(k)}\right)_{i}=\sum_{j=1}^{i-1} L_{i, j}\left(\mathbf{x}^{(k)}\right)_{j}+\sum_{j=i+1}^{n} U_{i, j}\left(\mathbf{x}^{(k-1)}\right)_{j}+\mathbf{b}_{i}
$$

It turns out that lurking somewhere in this equation is something that can be made to resemble a residual. The trick is to start by adding and subtracting a factor of $D_{i, i}\left(\mathbf{x}^{(k-1)}\right)_{i}$ on the right hand side.

$$
D_{i, i}\left(\mathbf{x}^{(k)}\right)_{i}=D_{i, i}\left(\mathbf{x}^{(k-1)}\right)_{i}+\left(\sum_{j=1}^{i-1} L_{i, j}\left(\mathbf{x}^{(k)}\right)_{j}\right)-D_{i, i}\left(\mathbf{x}^{(k-1)}\right)_{i}+\left(\sum_{j=i+1}^{n} U_{i, j}\left(\mathbf{x}^{(k-1)}\right)_{j}\right)+\mathbf{b}_{i}
$$

Recalling that $A=D-L-U$, the terms after the first term on the right can be rearranged to look like a residual:

$$
D_{i, i}\left(\mathbf{x}^{(k)}\right)_{i}=D_{i, i}\left(\mathbf{x}^{(k-1)}\right)_{i}+\left(\mathbf{b}_{i}-A \tilde{\mathbf{x}}_{i}\right)
$$

Where $\tilde{\mathbf{x}}_{i}$ is the $i^{\text {th }}$ intermediate vector between $\mathbf{x}^{(k-1)}$ and $\mathbf{x}^{(k)}$

$$
\tilde{\mathbf{x}}_{i}=\left(\left(\mathbf{x}^{(k)}\right)_{1},\left(\mathbf{x}^{(k)}\right)_{2},\left(\mathbf{x}^{(k)}\right)_{3}, \ldots,\left(\mathbf{x}^{(k)}\right)_{i-1},\left(\mathbf{x}^{(k-1)}\right)_{i}, \ldots,\left(\mathbf{x}^{(k-1)}\right)_{n}\right)
$$

Consider now the form

$$
\left(\mathbf{x}^{(k)}\right)_{i}=\left(\mathbf{x}^{(k-1)}\right)_{i}+\frac{\mathbf{b}_{i}-A \tilde{\mathbf{x}}_{i}}{D_{i, i}}
$$

This expression takes the form

$$
\left(\mathbf{x}^{(k)}\right)_{i}=\left(\mathbf{x}^{(k-1)}\right)_{i}+(\text { error term })
$$

The formula suggests that we get from $\mathbf{x}^{(k-1)}$ to $\mathbf{x}^{(k)}$ by computing and adding an error term. This process of moving toward a result by computing and adding error terms goes by the name of relaxation. What if we could accelerate this relaxation process by cranking up the error term, in effect overrelaxing?

$$
\left(\mathbf{x}^{(k)}\right)_{i}=\left(\mathbf{x}^{(k-1)}\right)_{i}+\omega(\text { error term })
$$

Under some circumstances, this can actually work. To work out the details we have to work backwards from this form to something that resembles the original formula for the Gauss-Seidel method.

$$
D_{i, i}\left(\mathbf{x}^{(k)}\right)_{i}=D_{i, i}\left(\mathbf{x}^{(k-1)}\right)_{i}+\omega\left(\left(\sum_{j=1}^{i-1} L_{i, j}\left(\mathbf{x}^{(k)}\right)_{j}\right)-D_{i, i}\left(\mathbf{x}^{(k-1)}\right)_{i}+\left(\sum_{j=i+1}^{n} U_{i, j}\left(\mathbf{x}^{(k-1)}\right)_{j}\right)+\mathbf{b}_{i}\right)
$$

This is row i of a more general formula

$$
D \mathbf{x}^{(k)}=(1-\omega) D \mathbf{x}^{(k-1)}+\omega L \mathbf{x}^{(k)}+\omega U \mathbf{x}^{(k-1)}+\omega \mathbf{b}
$$

or

$$
\mathbf{x}^{(k)}=(D-\omega L)^{-1}((1-\omega) D+\omega U) \mathbf{x}^{(k-1)}+\omega(D-\omega L)^{-1} \mathbf{b}=T_{\omega} \mathbf{x}^{(k-1)}+\mathbf{c}_{\omega}
$$

When $\omega>1$ this is known as the method of successive overrelaxation, or the SOR method for short.

