Improving on Gaussian Elimination

Gaussian elimination is the standard technique used to solve systems of linear equations. The big problem with Gaussian elimination is its inefficiency. For very large *n*, it is impractical to apply an $O(n^3)$ algorithm to solve an *n* by *n* system.

In chapter 7 we are going to study various alternatives to Gaussian elimination. Most of these schemes are iterative schemes that start with a starting guess and apply an iterative process to construct a sequence of vectors that we hope converge toward a solution.

The first technical issue we need to deal with in chapter 7 is the question of convergence. How do we formally express the fact that a sequence of vectors is converging to a limit?

Measuring distances

Before we can discuss convergence, we need to start with some reasonable notion of distance. That is, given two vectors \mathbf{x} and \mathbf{y} , how far apart are \mathbf{x} and \mathbf{y} ? The following definition formalizes the notion of distance applied to vectors.

Definition A vector norm on \mathbb{R}^n is a function, || ||, from \mathbb{R}^n to \mathbb{R} with the following properties:

- 1. $\|\mathbf{x}\| \ge 0$ for all $\mathbf{x} \in \mathbb{R}^n$.
- 2. $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = 0$.
- 3. $||\alpha \mathbf{x}|| = |\alpha| ||\mathbf{x}||$ for all $\alpha \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^{n}$.
- 4. $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.

In practice, several different norms are used to measure distances in \mathbb{R}^n . The l_{∞} norm is defined by

$$\|\mathbf{x}\|_{\infty} = \max_{1 \le j \le n} |x_j|$$

The l_1 norm is defined by

$$\|\mathbf{x}\|_1 = \sum_{j=1}^n |x_j|$$

The l_2 norm is defined by

$$||\mathbf{x}||_2 = \sqrt{\sum_{j=1}^n |x_j|^2}$$

The l_2 norm conforms most closely to the standard notion of distance in \mathbb{R}^n and is the norm most commonly used. With a notion of distance in place, we can move on to a definition of convergence.

Definition A sequence $\{\mathbf{x}^{(k)}\}$ of vectors in \mathbb{R}^n is said to converge to \mathbf{x} with respect to the l_2 norm if

$$\lim_{k \to \infty} \|\mathbf{x}^{(k)} - \mathbf{x}\|_2 = 0$$

It is possible to show that if a sequence converges with respect to any of the three norms shown above then it converges with respect to all the other norms.

Matrix Norms

A closely related concept is the idea of a matrix norm.

Definition A *matrix norm* on the set of all *n* by *n* matrices is a real valued function || || on the set of *n* by *n* matrices satisfying for all *n* by *n* matrices *A* and *B* and all real numbers α :

1. $||A|| \ge 0$

2. ||A|| = 0 if and only if A is a matrix with all 0 entries.

3. $||\alpha A|| = |\alpha| ||A||$

4. $||A + B|| \le ||A|| + ||B||$

5. $||A B|| \le ||A|| ||B||$

Matrix norms are most commonly constructed via the following theorem.

Theorem If || || is a vector norm on \mathbb{R}^n , then

 $||A|| = \max_{||\mathbf{x}||=1} ||A x||$

is a matrix norm.