Euler's method

In section 5.3 we saw the Taylor method for estimating solutions to differential equations. This method is based on doing a Taylor expansion of the solution function about a known point:

$$
y\left(t_{k+1}\right) \approx y\left(t_{k}\right)+y^{\prime}\left(t_{k}\right)\left(t_{k+1}-t_{k}\right)+\frac{y^{\prime \prime}\left(t_{k}\right)}{2}\left(t_{k+1}-t_{k}\right)^{2}+\cdots+\frac{y^{(n)}\left(t_{k}\right)}{n!}\left(t_{k+1}-t_{k}\right)^{n}
$$

In cases where the spacing between sample points is fixed at h, this simplifies to

$$
y\left(t_{k+1}\right) \approx y\left(t_{k}\right)+y^{\prime}\left(t_{k}\right) h+\frac{y^{\prime \prime}\left(t_{k}\right)}{2} h^{2}+\cdots+\frac{y^{(n)}\left(t_{k}\right)}{n!} h^{n}
$$

The simplest version of this method corresponds to setting $n=1$:

$$
y\left(t_{k+1}\right) \approx y\left(t_{k}\right)+y^{\prime}\left(t_{k}\right) h
$$

After substituting what we know about $y^{\prime}(t)$ from the differential equation and using our standard notation for approximate solutions, we arrive at

$$
\begin{gathered}
w_{k+1}=w_{k}+f\left(t_{k}, w_{k}\right) h \\
w_{0}=y_{0}=\alpha
\end{gathered}
$$

This simplest form of the Taylor method is also known as Euler's method.

A multistep method

The picture below illustrates why Euler's method typically does not produce great results.

The method essentially constructs a tangent line to the solution curve at $\left(t_{k}, y_{k}\right)$ and uses that construct an estimate at a later time. The problem with this approach is that the actual solution will not be travelling in a straight line. If we try to approximate it with a straight line we will be making an obvious error.

One potential fix is to replace the slope of the straight line with a better slope. Right now we are using $f\left(t_{k}, y_{k}\right)$ as our slope. If we were able to replace this with a better slope, we could get a better result.

This is the aim of so-called multi-step methods. The simplest multi-step method is the modified Euler method. In this method we compute a pair of slopes and average them together in an effort to get a better slope:

$$
\begin{gathered}
p_{0}=w_{k} \\
k_{1}=f\left(t_{0}, p_{0}\right) \\
p_{1}=p_{0}+k_{1} h \\
k_{2}=f\left(t_{1}, p_{1}\right) \\
w_{k+1}=w_{k}+\frac{k_{1}+k_{2}}{2} h
\end{gathered}
$$

The general procedure in a multi-step method is to construct a set of slope estimates k_{1} through k_{n} and then average them together to make the slope we will use to compute w_{k+1} from w_{k}.

$$
\begin{gathered}
k_{1}=f\left(t_{k}, w_{k}\right) \\
k_{i}=f\left(t_{k}+\alpha_{i} h, w_{k}+h \sum_{j=1}^{i-1} \beta_{i, j} k_{j}\right)
\end{gathered}
$$

$$
\begin{gathered}
s=\sum_{i=1}^{n} \gamma_{i} k_{i} \\
w_{k+1}=w_{k}+s h
\end{gathered}
$$

This approach has two advantages. One is that the necessary calculations are simpler than the calculations we would have to do in a Taylor method. The second advantage is that this method has a lot of constants we can tweak, so we can potentially tune this method to produce results that are as good as a Taylor method of degree n. The Mathematica notebook I have provided for chapter five works through some examples to illustrate how this can be done.

