
Improving Quadrature Formulas

Up to this point we have been constructing quadrature formulas by interpolating integrands at a set of evenly
spaced sample points and using the integrals of the interpolating polynomials to estimate the integral of the
original integrand. A degree of freedom that we did not take advantage of in that process is the freedom to move
the interpolation points around in the interval. What happens when we allow the interpolation points to float and
try to optimize our results by selecting the best set of interpolating points?

One thing that is not immediately clear is whether or not the choice of optimal interpolation points can be made
independent of the integrand. It turns out that they can, which is the basis for a general method called Gaussian
Quadrature.

Another thing we will need is a method to determine how good a set of quadrature points is. One useful measure
is the following:

Definition A quadrature formula

∫ b

a
f(x) d x ≈ ∑

j = 1

k

cj f(xj)

is said to be exact to degree n if it yields exact equality when f(x) is any polynomial of degree n or less.

Orthogonal Polynomials

The key to the Gaussian Quadrature is a special set of polynomials called orthogonal polynomials. A set p1(x), p2(
x), …, pn(x) of polynomials is orthogonal on an interval [a,b] if

∫ b

a
pj(x) pk(x) d x = 0

for all j ≠ k. Changing the interval [a,b] will change the polynomials.

Another important characteristic of orthogonal polynomials is that if pn(x) is an orthogonal polynomial of degree
n and p(x) is any polynomial of degree less than n then

∫ b

a
p(x) pn(x) d x = 0

One commonly used set of orthogonal polynomials are the Legendre polynomials, which are orthogonal on the
interval [-1,1]. Another useful characteristic of these polynomials is that all of their roots are real and are all
located in the interval [-1,1].

Gaussian Quadrature

The Gaussian Quadrature method uses the roots x1, x2, …, xn of the nth degree Legendre polynomial Pn(x) on
[-1,1] as interpolation points to produce an improved quadrature formula. The following theorem shows why this
is a good choice.
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Theorem If x1, x2, …, xn are the roots of the nth degree Legendre polynomial Pn(x), Ln,k(x) is the kth Lagrange
basis function formed from these roots, and

ck = ∫ 1

-1
Ln,k(x) d x

then for any polynomial P(x) of degree less than 2 n we have

∫ 1

-1
P(x) d x = ∑

k = 1

n

ck P(xk)

Proof First, note that if P(x) is any polynomial of degree n-1 or less we can interpolate the points (x1, P(x1)),
(x2, P(x2)), … (xn, P(xn)) and get an exact equality:

P(x) = ∑
k = 1

n

P(xk) Ln,k(x)

Integrating this equality gives

∫ 1

-1
P(x) d x = ∫ 1

-1
∑
k = 1

n

P(xk) Ln,k(x) d x = ∑
k = 1

n

P(xk) ∫
1

-1
Ln,k(x) d x = ∑

k = 1

n

ck P(xk)

Since the Legendre polynomials are orthogonal on the interval [-1,1] we can go beyond this. Let P(x) be any
polynomial of degree less than 2 n and let Pn(x) be the nth Legendre polynomial. We form

P(x) = Q(x) Pn(x) + R(x)

where Q(x) and R(x) are the polynomial quotient and remainder that result when we divide Pn(x) into P(x). Note
that since P(x) has degree less than 2 n and Pn(x) has degree n, both Q(x) and R(x) will have degree less than n.

Now note that

P(xk) = Q(xk) Pn(xk) + R(xk) = Q(xk) 0 + R(xk) = R(xk)

since the points xk were chosen to be roots of Pn(x). Consider what happens when we integrate P(x):

∫ 1

-1
P(x) d x = ∫ 1

-1
Q(x) Pn(x) + R(x) d x = ∫ 1

-1
Q(x) Pn(x) d x + ∫ 1

-1
R(x) d x

Since Pn(x) is an orthogonal polynomial of degree n and Q(x) has degree less than n we have

∫ 1

-1
Q(x) Pn(x) d x = 0

and

∫ 1

-1
P(x) d x = ∫ 1

-1
R(x) d x = ∑

k = 1

n

ck R(xk) = ∑
k = 1

n

ck P(xk)

since R(x) has degree less than n.
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An important thing to note about the quadrature formula we have just developed is that the coefficients ck do not
depend on P(x):

ck = ∫ 1

-1
Ln,k(x) d x

This means that we can pre-compute and tabulate the roots x1, x2, …, xn and coefficients ck and reuse those for
each new integrand we have to deal with.

Integrating on [a,b]

The one remaining limitation of the quadrature formula we developed above is that it requires us to integrate on
the interval [-1,1]. If we have to integrate on an interval [a,b] instead, we have to make a slight adjustment. The
trick we need is to do a change of variables that transforms the interval [a,b] into [-1,1]. The simplest such change
of variables is

x =
2
1 ((b - a) t + a + b)

To use this we do

∫ 1

-1
f(x) d x =

2
b - a∫ 1

-1
f( 2

(b-a) t + a + b)d t

The latter integral can be computed by the method above.
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