Polynomial Interpolation

The polynomial interpolation problem is the problem of constructing a polynomial that passes through or interpolates $n+1$ data points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$. In chapter 3 we are going to see several techniques for constructing interpolating polynomials.

Lagrange Interpolation

To construct a polynomial of degree n passing through $n+1$ data points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ we start by constructing a set of basis polynomials $L_{n, k}(x)$ with the property that

$$
L_{n, k}\left(x_{j}\right)=\left\{\begin{array}{l}
1 \text { when } j=k \\
0 \text { when } j \neq k
\end{array}\right.
$$

These basis polynomials are easy to construct. For example for a sequence of x values $\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}$ we would have the four basis polynomials

$$
\begin{aligned}
& L_{3,0}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)} \\
& L_{3,1}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} \\
& L_{3,2}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} \\
& L_{3,3}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)}
\end{aligned}
$$

Once we have constructed these basis functions, we can form the $n^{\text {th }}$ degree Lagrange interpolating polynomial

$$
L(x)=\sum_{k=0}^{n} y_{k} L_{n, k}(x)
$$

This polynomial does what we want it to do, because when $x=x_{j}$ every one of the basis functions vanishes, except for $L_{n, j}(x)$, which has value 1 . Thus $L\left(x_{j}\right)=y_{j}$ for every j and the polynomial interpolates each one of the data points in the original data set.

An example

Here is a set of data points.

x	y
4.1168	0.213631
4.19236	0.214232
4.20967	0.21441
4.46908	0.218788
1	

Here is a plot of these points showing that they line up along a curve, but the curve is not quite linear.

To construct the Lagrange interpolating polynomial of degree 3 passing through these points we first compute basis functions:

$$
\begin{gathered}
L_{3,0}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)} \\
=\frac{(x-4.19236)(x-4.20967)(x-4.46908)}{(4.1168-4.19236)(4.1168-4.20967)(4.1168-4.46908)} \\
=\frac{L_{3,1}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)}}{(4.19236-4.1168)(4.19236-4.20967)(4.19236-4.46908)} \\
=\frac{(x-4.1168)(x-4.20967)(x-4.46908)}{L_{3,2}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)}} \\
=\frac{(x-4.1168)(x-4.19236)(x-4.46908)}{(4.20967-4.1168)(4.20967-4.19236)(4.20967-4.46908)}
\end{gathered}
$$

$$
\begin{gathered}
L_{3,3}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} \\
=\frac{(x-4.1168)(x-4.19236)(x-4.20967)}{(4.46908-4.1168)(4.46908-4.19236)(4.46908-4.20967)}
\end{gathered}
$$

From these we construct the interpolating polynomial:

$$
\begin{aligned}
& L(x)=y_{0} L_{3,0}(x)+y_{1} L_{3,1}(x)+y_{2} L_{3,2}(x)+y_{3} L_{3,3}(x) \\
=- & -000355245 x^{3}+0.0695519 x^{2}-0.386008 x+0.871839
\end{aligned}
$$

Here are the original data points plotted along with the interpolating polynomial.

Error Estimate

For each polynomial interpolation method we examine in chapter 3 we will want to also generate an estimate of how accurate the method the method is for a particular application. For example, suppose that the data points (x_{0}, $\left.y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ we interpolate by this method are actually generated by an underlying function $f(x)$. That is, $y_{k}=f\left(x_{k}\right)$ for all k. How large can we then expect the error

$$
|f(x)-L(x)|
$$

to be over a range of x including the x values we interpolated?
The following theorem answers this question.
Theorem If the function $f(x)$ has $n+1$ continuous derivatives on some interval $[a, b]$ and the polynomial $P(x)$ is the Lagrange interpolating polynomial constructed to interpolate a set of points $\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right), \ldots,\left(x_{n}, f\left(x_{n}\right)\right)$ with $x_{k} \in[a, b]$ for all k then for each x in $[a, b]$ there is a $\xi(x)$ such that

$$
f(x)=P(x)+\frac{f^{(n+1)}(\xi(x))}{(n+1)!}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)
$$

Proof If x is any one of the points x_{k} we have that

$$
f\left(x_{k}\right)=P\left(x_{k}\right)+\frac{f^{(n+1)}\left(\xi\left(x_{k}\right)\right)}{(n+1)!}\left(x_{k}-x_{0}\right)\left(x_{k}-x_{1}\right) \cdots\left(x_{k}-x_{k}\right) \cdots\left(x_{k}-x_{n}\right)
$$

or

$$
f\left(x_{k}\right)=f\left(x_{k}\right)+0
$$

For $x \neq x_{k}$ for any k, we define a function

$$
g(t)=f(t)-P(t)-[f(x)-P(x)] \frac{\left(t-x_{0}\right)\left(t-x_{1}\right) \ldots\left(t-x_{n}\right)}{\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)}
$$

Note that $g(t)$ vanishes as each of the $n+1$ points $t=x_{k}$. By construction, $g(t)$ also vanishes at $t=x$. This means that $g(t)$ vanishes at a total of $n+2$ distinct points. Note also that $g(t)$ has $n+1$ continuous derivatives on the interval $[a, b]$. By the generalized version of Rolle's theorem, there must be a $\xi(x)$ in $[a, b]$ such that

$$
g^{(n+1)}(\xi(x))=0
$$

or

$$
\begin{gathered}
0=g^{(n+1)}(\xi(x)) \\
=f^{(n+1)}(\xi(x))-P^{(n+1)}(\xi(x)) \\
-[f(x)-P(x)] \frac{\mathrm{d}^{n+1}}{\mathrm{~d} t^{n+1}}\left(\frac{\left(t-x_{0}\right)\left(t-x_{1}\right) \ldots\left(t-x_{n}\right)}{\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)}\right) \mathrm{l}_{t=\xi(x)}
\end{gathered}
$$

or

$$
0=f^{(n+1)}(\xi(x))-[f(x)-P(x)] \frac{(n+1)!}{\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)}
$$

Solving this equation for $f(x)$ gives

$$
f(x)=P(x)+\frac{f^{(n+1)}(\xi(x))}{(n+1)!}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)
$$

