
Polynomial Interpolation

The polynomial interpolation problem is the problem of constructing a polynomial that passes through or
interpolates n+1 data points (x0, y0), (x1, y1), ... , (xn, yn). In chapter 3 we are going to see several techniques for
constructing interpolating polynomials.

Lagrange Interpolation

To construct a polynomial of degree n passing through n+1 data points (x0, y0), (x1, y1), ... , (xn, yn) we start by
constructing a set of basis polynomials Ln,k(x) with the property that

Ln,k(xj) = {1
0
when j = k
when j ≠ k

These basis polynomials are easy to construct. For example for a sequence of x values {x0, x1, x2, x3} we would
have the four basis polynomials

L3,0(x) =
(x0 - x1) (x0 - x2) (x0 - x3)

(x - x1) (x - x2) (x - x3)

L3,1(x) =
(x1 - x0) (x1 - x2) (x1 - x3)

(x - x0) (x - x2) (x - x3)

L3,2(x) =
(x2 - x0) (x2 - x1) (x2 - x3)

(x - x0) (x - x1) (x - x3)

L3,3(x) =
(x3 - x0) (x3 - x1) (x3 - x2)

(x - x0) (x - x1) (x - x2)

Once we have constructed these basis functions, we can form the nth degree Lagrange interpolating polynomial

L(x) = ∑
k = 0

n

yk Ln,k(x)

This polynomial does what we want it to do, because when x = xj every one of the basis functions vanishes, except
for Ln,j(x), which has value 1. Thus L(xj) = yj for every j and the polynomial interpolates each one of the data
points in the original data set.

An example

Here is a set of data points.

x
4.1168
4.19236
4.20967
4.46908

y
0.213631
0.214232
0.21441
0.218788
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Here is a plot of these points showing that they line up along a curve, but the curve is not quite linear.

-data-

To construct the Lagrange interpolating polynomial of degree 3 passing through these points we first compute
basis functions:

L3,0(x) =
(x0 - x1) (x0 - x2) (x0 - x3)

(x - x1) (x - x2) (x - x3)

=
(4.1168 - 4.19236) (4.1168 - 4.20967) (4.1168 - 4.46908)

(x - 4.19236) (x - 4.20967) (x - 4.46908)

L3,1(x) =
(x1 - x0) (x1 - x2) (x1 - x3)

(x - x0) (x - x2) (x - x3)

=
(4.19236 - 4.1168) (4.19236 - 4.20967) (4.19236 - 4.46908)

(x - 4.1168) (x - 4.20967) (x - 4.46908)

L3,2(x) =
(x2 - x1) (x2 - x1) (x2 - x3)

(x - x0) (x - x1) (x - x3)

=
(4.20967 - 4.1168) (4.20967 - 4.19236) (4.20967 - 4.46908)

(x - 4.1168) (x - 4.19236) (x - 4.46908)
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L3,3(x) =
(x3 - x0) (x3 - x1) (x3 - x2)

(x - x0) (x - x1) (x - x2)

=
(4.46908 - 4.1168) (4.46908 - 4.19236) (4.46908 - 4.20967)

(x - 4.1168) (x - 4.19236) (x - 4.20967)

From these we construct the interpolating polynomial:

L(x) = y0 L3,0(x) + y1 L3,1(x) + y2 L3,2(x) + y3 L3,3(x)

= -0.00355245 x3 + 0.0695519 x2 - 0.386008 x + 0.871839

Here are the original data points plotted along with the interpolating polynomial.

-data-

y = -0.00355245 x3 + 0.0695519 x2 - 0.386008 x + 0.871839

Error Estimate

For each polynomial interpolation method we examine in chapter 3 we will want to also generate an estimate of
how accurate the method the method is for a particular application. For example, suppose that the data points (x0,
y0), (x1, y1), ... , (xn, yn) we interpolate by this method are actually generated by an underlying function f(x). That
is, yk = f(xk) for all k. How large can we then expect the error
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f(x) - L(x)

to be over a range of x including the x values we interpolated?

The following theorem answers this question.

Theorem If the function f(x) has n+1 continuous derivatives on some interval [a,b] and the polynomial P(x) is the
Lagrange interpolating polynomial constructed to interpolate a set of points (x0, f(x0)), (x1, f(x1)), ... , (xn, f(xn))
with xk ∈ [a,b] for all k then for each x in [a,b] there is a ξ(x) such that

f(x) = P(x) +
(n+1)!

f(n+1)(ξ(x)) (x - x0)(x - x1)⋯(x - xn)

Proof If x is any one of the points xk we have that

f(xk) = P(xk) +
(n+1)!

f(n+1)(ξ(xk)) (xk - x0)(xk - x1)⋯(xk - xk)⋯(xk - xn)

or

f(xk) = f(xk) + 0

For x ≠ xk for any k, we define a function

g(t) = f(t) - P(t) - [f(x) - P(x)]
(x - x0)(x - x1)…(x - xn)
(t - x0)(t - x1)…(t - xn)

Note that g(t) vanishes as each of the n+1 points t = xk. By construction, g(t) also vanishes at t = x. This means
that g(t) vanishes at a total of n+2 distinct points. Note also that g(t) has n+1 continuous derivatives on the
interval [a,b]. By the generalized version of Rolle's theorem, there must be a ξ(x) in [a,b] such that

g(n+1)(ξ(x)) = 0

or

0 = g(n+1)(ξ(x))

= f(n+1)(ξ(x)) - P(n+1)(ξ(x))

- [f(x) - P(x)] dn+1

dtn+1((x - x0)(x - x1)…(x - xn)
(t - x0)(t - x1)…(t - xn) )|t = ξ(x)

or

0 = f(n+1)(ξ(x)) - [f(x) - P(x)]
(x - x0)(x - x1)…(x - xn)

(n+1)!

Solving this equation for f(x) gives
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f(x) = P(x) +
(n+1)!

f(n+1)(ξ(x)) (x - x0)(x - x1)⋯(x - xn)
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