A parabolic PDE

The heat equation on a long, thin rod is

$$
\frac{\partial u}{\partial t}(x, t)=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}(x, t)
$$

with boundary conditions

$$
\begin{gathered}
u(0, t)=0 \\
u(l, t)=0 \\
u(x, 0)=f(x)
\end{gathered}
$$

We solve this equation by the method of finite differences by replacing the derivative terms with difference quotients on a set of grid points $\left(x_{i}, t_{j}\right)$:

$$
\begin{gathered}
\frac{\partial u}{\partial t}\left(x_{i}, t_{j}\right)=\frac{u\left(x_{i}, t_{j}+k\right)-u\left(x_{i}, t_{j}\right)}{k}+O(k) \\
\frac{\partial^{2} u}{\partial x^{2}}\left(x_{i}, t_{j}\right)=\frac{u\left(x_{i}+h, t_{j}\right)-2 u\left(x_{i}, t_{j}\right)+u\left(x_{i}-h, t_{j}\right)}{h^{2}}+O\left(h^{2}\right)
\end{gathered}
$$

Here the grid points are determined by the formulas

$$
\begin{aligned}
x_{i} & =i h \\
t_{j} & =j k \\
h & =\frac{l}{m}
\end{aligned}
$$

where i ranges from 0 to m.

The forward difference method

Plugging these estimates into the PDE and using the notation $w_{i, j}$ for our estimates for $u\left(x_{i}, t_{j}\right)$ we get that the $w_{i, j}$ satisfy a system of equations

$$
\frac{w_{i, j+1}-w_{i, j}}{k}-\alpha^{2} \frac{w_{i+1, j}-2 w_{i, j}+w_{i-1, j}}{h^{2}}=0
$$

Solving these equations for $w_{i, j+1}$ gives

$$
\begin{equation*}
w_{i, j+1}=\left(1-\frac{2 \alpha^{2} k}{h^{2}}\right) w_{i, j}+\alpha^{2} \frac{k}{h^{2}}\left(w_{i-1, j}+w_{i+1, j}\right) \tag{1}
\end{equation*}
$$

This can also be written as a simple matrix equation

$$
\mathbf{w}^{(j+1)}=A \mathbf{w}^{(j)}
$$

The initial conditions give us that

$$
\begin{gathered}
w_{0, j}=0 \\
w_{m, j}=0 \\
w_{i}, 0=f\left(x_{i}\right)
\end{gathered}
$$

Since all of the terms on the right hand side of equation (1) are known for $j=0$, we can compute $w_{i, 1}$ for all i. Similarly, we can compute all of the $w_{i, j}$ terms we want by just iterating over j and i.

In practice, though, this simple method does not work well, since the solution generated by this method not numerically stable: small errors in the initial function $f(x)$ can translate into large errors in our estimate for $u(x, t)$ for large t.

The backward difference method

An alternative approach is to use the difference quotient

$$
\frac{\partial u}{\partial t}\left(x_{i}, t_{j}\right)=\frac{u\left(x_{i}, t_{j}\right)-u\left(x_{i}, t_{j}-k\right)}{k}+O(k)
$$

in the original equation. This changes our system of equations to

$$
\frac{w_{i, j}-w_{i, j-1}}{k}-\alpha^{2} \frac{w_{i+1, j}-2 w_{i, j}+w_{i-1, j}}{h^{2}}=0
$$

or

$$
-\lambda w_{i-1, j}+(1+2 \lambda) w_{i, j}-\lambda w_{i+1}, j=w_{i, j-1}
$$

where $\lambda=\alpha^{2} k / h^{2}$.
Now to solve for $w_{i, j}$ for a given j and $1 \leq i \leq m-1$ we have to solve a system of $m-1$ equations in $m-1$ unknowns.

A hyperbolic PDE

The wave equation for a vibrating string is

$$
\frac{\partial^{2} u}{\partial t^{2}}(x, t)-\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}(x, t)=0
$$

The boundary conditions for this problem specify that the string is fixed at both ends of the interval $0 \leq$ $x \leq l$, and also specify the initial displacement and velocity of the string at time $t=0$:

$$
\begin{gathered}
u(0, t)=u(l, t)=0 \\
u(x, 0)=f(x) \\
\frac{\partial u}{\partial t}(x, 0)=g(x)
\end{gathered}
$$

We solve this equation by the method of finite differences by replacing the derivative terms with difference quotients on a set of grid points $\left(x_{i}, t_{j}\right)$:

$$
\begin{aligned}
& \frac{\partial^{2} u\left(x_{i}, t_{j}\right)}{\partial t^{2}}=\frac{u\left(x_{i}, t_{j}+k\right)-2 u\left(x_{i}, t_{j}\right)+u\left(x_{i}, t_{j}-k\right)}{k^{2}}+O\left(k^{2}\right) \\
& \frac{\partial^{2} u}{\partial x^{2}}\left(x_{i}, t_{j}\right)=\frac{u\left(x_{i}+h, t_{j}\right)-2 u\left(x_{i}, t_{j}\right)+u\left(x_{i}-h, t_{j}\right)}{h^{2}}+O\left(h^{2}\right)
\end{aligned}
$$

Here the grid points are determined by the formulas

$$
\begin{aligned}
x_{i} & =i h \\
t_{j} & =j k \\
h & =\frac{l}{m}
\end{aligned}
$$

where i ranges from 0 to m.
Plugging these estimates into the PDE and using the notation $w_{i, j}$ for our estimates for $u\left(x_{i}, t_{j}\right)$ we get that the $w_{i, j}$ satisfy a system of equations

$$
\frac{w_{i, j+1}-2 w_{i, j}+w_{i, j-1}}{k^{2}}-\alpha^{2} \frac{w_{i+1, j}-2 w_{i, j}+w_{i-1, j}}{h^{2}}=0
$$

If we solve this equation for $w_{i, j+1}$ we get

$$
w_{i, j+1}=2\left(1-\lambda^{2}\right) w_{i, j}+\lambda^{2}\left(w_{i+1, j}+w_{i-1, j}\right)-w_{i, j-1}
$$

This update rule allows us to compute an approximation for $u\left(x_{i}, t_{j+1}\right)$ in terms of estimates at t_{j} and t_{j-1}. The only problem with this scheme is the case $j=0$. To compute estimates for $u\left(x_{i}, t_{1}\right)$ we would need values for the solution at $t_{0}=0$ and $t_{-1}=-k$. The boundary condition $u(x, 0)=f(x)$ gives us the first set of values, but we don't have values to tell us what u is doing at $t=-k$.

One fix for this problem is to start with a power series expansion for $u(x, t)$ in t about $\mathrm{t}=0$:

$$
u\left(x_{i}, t_{1}\right)=u\left(x_{i}, 0\right)+k \frac{\partial u}{\partial t}\left(x_{i}, 0\right)+\frac{k^{2}}{2} \frac{\partial^{2} u}{\partial t^{2}}\left(x_{i}, 0\right)+O\left(k^{3}\right)
$$

The first derivative term is given by one of the initial conditions. We can handle the second derivative term by solving the differential equation for $\frac{\partial^{2} u}{\partial t^{2}}\left(x_{i}, 0\right)$:

$$
\frac{\partial^{2} u}{\partial t^{2}}\left(x_{i}, 0\right)=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}\left(x_{i}, 0\right)=\alpha^{2} \frac{\mathrm{~d}^{2} f}{\mathrm{~d} x^{2}}(x)
$$

Putting this all together gives us

$$
u\left(x_{i}, t_{1}\right)=u\left(x_{i}, 0\right)+k g\left(x_{i}\right)+\frac{\alpha^{2} k^{2}}{2} f^{\prime \prime}\left(x_{i}\right)+O\left(k^{3}\right)
$$

Thus we have

$$
\begin{gathered}
w_{i, 0}=f\left(x_{i}\right) \\
w_{i, 1}=w_{i, 0}+k g\left(x_{i}\right)+\frac{\alpha^{2} k^{2}}{2} f^{\prime \prime}\left(x_{i}\right) \\
w_{i, j+1}=2\left(1-\lambda^{2}\right) w_{i, j}+\lambda^{2}\left(w_{i+1, j}+w_{i-1, j}\right)-w_{i, j-1}
\end{gathered}
$$

