A parabolic PDE

The heat equation on a long, thin rod is

$$\frac{\partial u}{\partial t}(x,t) = \alpha^2 \frac{\partial^2 u}{\partial x^2}(x,t)$$

with boundary conditions

$$u(0,t) = 0$$
$$u(l,t) = 0$$
$$u(x,0) = f(x)$$

We solve this equation by the method of finite differences by replacing the derivative terms with difference quotients on a set of grid points (x_i, t_j) :

$$\frac{\partial u}{\partial t}(x_i, t_j) = \frac{u(x_i, t_j + k) - u(x_i, t_j)}{k} + O(k)$$
$$\frac{\partial^2 u}{\partial x^2}(x_i, t_j) = \frac{u(x_i + h, t_j) - 2u(x_i, t_j) + u(x_i - h, t_j)}{h^2} + O(h^2)$$

Here the grid points are determined by the formulas

$$x_i = i h$$
$$t_j = j k$$
$$h = \frac{l}{m}$$

where *i* ranges from 0 to *m*.

The forward difference method

Plugging these estimates into the PDE and using the notation $w_{i,j}$ for our estimates for $u(x_i,t_j)$ we get that the $w_{i,j}$ satisfy a system of equations

$$\frac{w_{i,j+1} - w_{i,j}}{k} - \alpha^2 \frac{w_{i+1,j} - 2 w_{i,j} + w_{i-1,j}}{h^2} = 0$$

Solving these equations for $w_{i,j+1}$ gives

$$w_{i,j+1} = \left(1 - \frac{2\alpha^2 k}{h^2}\right) w_{i,j} + \alpha^2 \frac{k}{h^2} \left(w_{i-1,j} + w_{i+1,j}\right)$$
(1)

This can also be written as a simple matrix equation

$$\mathbf{w}^{(j+1)} = A \mathbf{w}^{(j)}$$

The initial conditions give us that

$$w_{0,j} = 0$$
$$w_{m,j} = 0$$
$$w_{i,0} = f(x_i)$$

Since all of the terms on the right hand side of equation (1) are known for j = 0, we can compute $w_{i,1}$ for all *i*. Similarly, we can compute all of the $w_{i,j}$ terms we want by just iterating over *j* and *i*.

In practice, though, this simple method does not work well, since the solution generated by this method not numerically stable: small errors in the initial function f(x) can translate into large errors in our estimate for u(x,t) for large t.

The backward difference method

An alternative approach is to use the difference quotient

$$\frac{\partial u}{\partial t}(x_i, t_j) = \frac{u(x_i, t_j) - u(x_i, t_j - k)}{k} + O(k)$$

in the original equation. This changes our system of equations to

$$\frac{w_{i,j} - w_{i,j-1}}{k} - \alpha^2 \frac{w_{i+1,j} - 2 w_{i,j} + w_{i-1,j}}{h^2} = 0$$

or

$$-\lambda w_{i-1,j} + (1+2\lambda) w_{i,j} - \lambda w_{i+1,j} = w_{i,j-1}$$

where $\lambda = \alpha^2 k/h^2$.

Now to solve for $w_{i,j}$ for a given j and $1 \le i \le m-1$ we have to solve a system of m-1 equations in m-1 unknowns.

A hyperbolic PDE

The wave equation for a vibrating string is

$$\frac{\partial^2 u}{\partial t^2}(x,t) - \alpha^2 \frac{\partial^2 u}{\partial x^2}(x,t) = 0$$

The boundary conditions for this problem specify that the string is fixed at both ends of the interval $0 \le x \le l$, and also specify the initial displacement and velocity of the string at time t = 0:

$$u(0,t) = u(l,t) = 0$$
$$u(x,0) = f(x)$$
$$\frac{\partial u}{\partial t}(x,0) = g(x)$$

We solve this equation by the method of finite differences by replacing the derivative terms with difference quotients on a set of grid points (x_i, t_j) :

$$\frac{\partial^2 u}{\partial t^2}(x_i, t_j) = \frac{u(x_i, t_j + k) - 2 u(x_i, t_j) + u(x_i, t_j - k)}{k^2} + O(k^2)$$
$$\frac{\partial^2 u}{\partial x^2}(x_i, t_j) = \frac{u(x_i + h, t_j) - 2 u(x_i, t_j) + u(x_i - h, t_j)}{h^2} + O(h^2)$$

Here the grid points are determined by the formulas

$$x_i = i h$$
$$t_j = j k$$
$$h = \frac{l}{m}$$

where *i* ranges from 0 to *m*.

Plugging these estimates into the PDE and using the notation $w_{i,j}$ for our estimates for $u(x_i,t_j)$ we get that the $w_{i,j}$ satisfy a system of equations

$$\frac{w_{i,j+1} - 2 w_{i,j} + w_{i,j-1}}{k^2} - \alpha^2 \frac{w_{i+1,j} - 2 w_{i,j} + w_{i-1,j}}{h^2} = 0$$

If we solve this equation for $w_{i,j+1}$ we get

$$w_{i,j+1} = 2 (1 - \lambda^2) w_{i,j} + \lambda^2 (w_{i+1,j} + w_{i-1,j}) - w_{i,j-1}$$

This update rule allows us to compute an approximation for $u(x_i,t_{j+1})$ in terms of estimates at t_j and t_{j-1} . The only problem with this scheme is the case j = 0. To compute estimates for $u(x_i,t_1)$ we would need values for the solution at $t_0 = 0$ and $t_{-1} = -k$. The boundary condition u(x,0) = f(x) gives us the first set of values, but we don't have values to tell us what u is doing at t = -k.

One fix for this problem is to start with a power series expansion for u(x,t) in t about t = 0:

$$u(x_i, t_1) = u(x_i, 0) + k \frac{\partial u}{\partial t}(x_i, 0) + \frac{k^2}{2} \frac{\partial^2 u}{\partial t^2}(x_i, 0) + O(k^3)$$

The first derivative term is given by one of the initial conditions. We can handle the second derivative term by solving the differential equation for $\frac{\partial^2 u}{\partial t^2}(x_i, 0)$:

$$\frac{\partial^2 u}{\partial t^2}(x_i, 0) = \alpha^2 \frac{\partial^2 u}{\partial x^2}(x_i, 0) = \alpha^2 \frac{\mathrm{d}^2 f}{\mathrm{d} x^2}(x)$$

Putting this all together gives us

$$u(x_i, t_1) = u(x_i, 0) + k g(x_i) + \frac{\alpha^2 k^2}{2} f''(x_i) + O(k^3)$$

Thus we have

$$w_{i,0} = f(x_i)$$

$$w_{i,1} = w_{i,0} + k g(x_i) + \frac{\alpha^2 k^2}{2} f''(x_i)$$

$$w_{i,j+1} = 2 (1 - \lambda^2) w_{i,j} + \lambda^2 (w_{i+1,j} + w_{i-1,j}) - w_{i,j-1}$$