
The nonlinear boundary value problem

The general nonlinear boundary value problem is

y″(x) = f(x,y(x),y′(x))

y(a) = α

y(b) = β

In the method of finite differences we seek an approximate solution to this boundary value problem by setting up a
grid of N + 2 equally spaced points xi with x0 = a and xN+1 = b:

h =
N+1
b-a

xi = a + i h

The method seeks to compute estimates for y(xi) at each of the interior points xi for i ranging from 1 to N by
replacing the derivative terms with finite difference estimates and solving a set of equations. Specifically, we
replace the term y″(xi) with an O(h2) centered difference formula

y″(xi) =
h2

y(xi+1) - 2 y(xi) + y(xi-1) -
12
h2 y(4)(ξi)

and we replace the term y′(xi) with an O(h2) centered difference formula

y′(xi) =
2 h

y(xi+1) - y(xi-1) -
6
h2 y(3)(ηi)

Making these substitutions gives

h2
y(xi+1) - 2 y(xi) + y(xi-1) =f(xi, y(xi),

2 h
y(xi+1) - y(xi-1))

If f(x,y,y′) is a nonlinear function, this is a coupled, nonlinear system of equations in the N unknowns y(xi). If we
let wi be the solution of this equation for y(xi) for each of these i values with w0 = α and wN+1 = β, we get a
coupled system of nonlinear equations in w1 through wN:

-
h2

wi+1 - 2 wi + wi-1 + f(xi, wi,
2 h

wi+1 - wi-1)= 0

Our problem has now degenerated to a root-finding problem. We seek the root of a function

g(w) =
g1(w1, w2, …, wN)
g2(w1, w2, …, wN)

⋮
gN(w1, w2, …, wN)

1

where

gk(w1, w2, …, wN) = -
h2

wk+1 - 2 wk + wk-1 + f(xk, wk,
2 h

wk+1 - wk-1)
and w0 = α and wN+1 = β.

Solving the system of equations

To solve the nonlinear root-finding problem we employ Newton's method for functions from ℝn to ℝn.

w(k) = w(k-1) - J -1(w(k-1)) g(w(k-1))

where the Jacobian matrix is

J(x) =

∂g1(w)
∂w1

∂g2(w)
∂w1
⋮

∂gN(w)
∂w1

∂g1(w)
∂w2

∂g2(w)
∂w2
⋮

∂gN(w)
∂w2

⋯

⋯

⋱
⋯

∂g1(w)
∂wN

∂g2(w)
∂wN
⋮

∂gN(w)
∂wN

One fact working to our advantage here is that gj(w) is independent of wk for k < j-1 and k > j+1. This means that
the Jacobian matrix is tri-diagonal.

Another optimization we can make here is to note that we don't have to compute the inverse of the Jacobian to
compute the term

J -1(w(k-1)) g(w(k-1))

instead, we can solve the equation

J (w(k-1)) z = g(w(k-1))

for z and then compute

w(k) = w(k-1) - z

Since the Jacobian matrix is tri-diagonal, we can apply a Crout factorization to it to get

J (w(k-1)) = L U

and then solve

L y = g(w(k-1))

and

2

U z = y

Summary of the method

Fix w0 = α and wN+1 = β and set w1 through wN to starting values. (Interpolating linearly between α and β is a
good choice.) This generates w(0).

Now repeat the following steps until ||g(w(k))|| drops below a desired tolerance.

1. Compute the tridiagonal Jacobian matrix J (w(k-1)).

2. Use Crout factorization to obtain

J (w(k-1)) = L U

3. Use back substitution to solve for y:

L y = g(w(k-1))

4. Use back substitution to solve for z:

U z = y

5. Compute

w(k) = w(k-1) - z

Extrapolation

For the same reasons as applied in the linear case, these results can be improved by extrapolation. The technique is
exactly the same: we compute a set of wi values for a given step size h, and then compute a second set for a step
size of h/2 and throw away every other wi. We then form extrapolated wi values

y(xi) =
3

4 wi(h/2) - wi(h) + O(h4)

3

