The finite difference method

Consider a linear boundary value problem.

$$
\begin{gathered}
y^{\prime \prime}(x)=p(x) y^{\prime}(x)+q(x) y(x)+r(x) \\
y(a)=\alpha \\
y(b)=\beta
\end{gathered}
$$

In the method of finite differences we seek an approximate solution to this boundary value problem by setting up a grid of $N+2$ equally spaced points x_{i} with $x_{0}=a$ and $x_{N+1}=b$:

$$
\begin{aligned}
h & =\frac{b-a}{N+1} \\
x_{i} & =a+i h
\end{aligned}
$$

The method seeks to compute estimates for $y\left(x_{i}\right)$ at each of the interior points x_{i} for i ranging from 1 to N by replacing the derivative terms with finite difference estimates and solving a set of equations. Specifically, we replace the term $y^{\prime \prime}\left(x_{i}\right)$ with an $O\left(h^{2}\right)$ centered difference formula

$$
y^{\prime \prime}\left(x_{i}\right)=\frac{y\left(x_{i+1}\right)-2 y\left(x_{i}\right)+y\left(x_{i-1}\right)}{h^{2}}-\frac{h^{2}}{12} y^{(4)}\left(\xi_{i}\right)
$$

and we replace the term $y^{\prime}\left(x_{i}\right)$ with an $O\left(h^{2}\right)$ centered difference formula

$$
y^{\prime}\left(x_{i}\right)=\frac{y\left(x_{i+1}\right)-y\left(x_{i-1}\right)}{2 h}-\frac{h^{2}}{6} y^{(3)}\left(n_{i}\right)
$$

Making these substitutions gives

$$
\frac{y\left(x_{i+1}\right)-2 y\left(x_{i}\right)+y\left(x_{i-1}\right)}{h^{2}}=p\left(x_{i}\right)\left(\frac{y\left(x_{i+1}\right)-y\left(x_{i-1}\right)}{2 h}\right)+q\left(x_{i}\right) y\left(x_{i}\right)+r\left(x_{i}\right)
$$

for each i ranging from 1 to N up to $O\left(h^{2}\right)$. If we let w_{i} be the solution of this equation for $y\left(x_{i}\right)$ for each of these i values with $w_{0}=\alpha$ and $w_{N+1}=\beta$, we get a coupled system of linear equations in w_{1} through w_{N} :

$$
\frac{w_{i+1}-2 w_{i}+w_{i-1}}{h^{2}}=p\left(x_{i}\right)\left(\frac{w_{i+1}-w_{i-1}}{2 h}\right)+q\left(x_{i}\right) w_{i}+r\left(x_{i}\right)
$$

Rearranging this equation slightly produces

$$
-\left(1+\frac{h}{2} p\left(x_{i}\right)\right) w_{i-1}+\left(2+h^{2} q\left(x_{i}\right)\right) w_{i}-\left(1-\frac{h}{2} p\left(x_{i}\right)\right) w_{i+1}=-h^{2} r\left(x_{i}\right)
$$

Solving the system of equations

Because the original boundary value problem was linear, the set of N equations in the N unknowns w_{1} through w_{N}
is linear and can be written in matrix form.

$$
\left.\left[\begin{array}{cccccc}
2+h^{2} q\left(x_{1}\right) & -\left(1-\frac{h}{2} p\left(x_{1}\right)\right) & 0 & \cdots & 0 & 0 \\
-\left(1+\frac{h}{2} p\left(x_{2}\right)\right) & 2+h^{2} q\left(x_{2}\right) & -\left(1-\frac{h}{2} p\left(x_{2}\right)\right) & \cdots & 0 & 0 \\
0 & -\left(1+\frac{h}{2} p\left(x_{3}\right)\right) & 2+h^{2} q\left(x_{3}\right) & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & 0 & 0 \\
0 & 0 & 0 & \cdots & 2+h^{2} q\left(x_{N-1}\right) & -\left(1-\frac{h}{2} p\left(x_{N-1}\right)\right) \\
0 & 0 & 0 & \cdots-\left(1+\frac{h}{2} p\left(x_{N}\right)\right) & 2+h^{2} q\left(x_{N}\right)
\end{array}\right]-\begin{array}{c}
w_{1} \\
w_{2} \\
w_{3} \\
\vdots \\
w_{N-1} \\
w_{N}
\end{array}\right] .
$$

or

$$
A \mathbf{w}=\mathbf{b}
$$

The coefficient matrix is tridiagonal, so we can solve this system most directly by Crout factorization of the matrix A.

$$
A=L U
$$

To solve the system we solve the two problems

$$
\begin{aligned}
& L \mathbf{z}=\mathbf{b} \\
& U \mathbf{w}=\mathbf{z}
\end{aligned}
$$

by back substitution.

Extrapolation

Because the w_{i} we solved for above were obtained by approximating solutions $y\left(x_{i}\right)$ to the original boundary value problem by an $O\left(h^{2}\right)$ process, we have that

$$
y\left(x_{i}\right)=w_{i}(h)+O\left(h^{2}\right)
$$

Here we have made the dependence of w_{i} on h explicit. Because $y\left(x_{i}\right)$ does not depend on h, this equation is a candidate for the Richardson extrapolation:

$$
\begin{gathered}
y\left(x_{i}\right)=w_{i}(h)+k_{1} h^{2}+k_{2} h^{4}+\cdots \\
y\left(x_{i}\right)=w_{i}(h / 2)+\frac{k_{1}}{4} h^{2}+\frac{k_{2}}{16} h^{4}+\cdots
\end{gathered}
$$

Combining these equations to eliminate the $O\left(h^{2}\right)$ terms gives

$$
y\left(x_{i}\right)=\frac{4 w_{i}(h / 2)-w_{i}(h)}{3}+O\left(h^{4}\right)
$$

To apply this formula, we compute a first set of w_{i} values from a step size h and a second set of w_{i} from a step size $h / 2$ and throw away every other value from the second set. We then apply the formula above to the remaining points to get an $O\left(h^{4}\right)$ approximation for the corresponding $y\left(x_{i}\right)$ values.

To get even more accurate results we could apply an extrapolation to the extrapolation. See the textbook for details.

