Roots and fixed points of vector-valued functions

A function $\mathbf{g}(\mathbf{x})$ from \mathbb{R}^{n} to \mathbb{R}^{n} has a fixed point at \mathbf{p} if $\mathbf{g}(\mathbf{p})=\mathbf{p}$.
Here is a fixed point theorem for vector-valued functions.
Theorem Let D be a closed, convex region in \mathbb{R}^{n}. Suppose $\mathbf{g}(\mathbf{x})$ is a continuous function that maps D into D. Then $\mathbf{g}(\mathbf{x})$ has a fixed point \mathbf{p} in D. Further, suppose that all the component functions of $\mathbf{g}(\mathbf{x})$ have continuous first partial derivatives in all variables and there is a constant $K<1$ such that

$$
\left|\frac{\partial g_{i}(\mathbf{x})}{\partial x_{j}}\right|<\frac{K}{n}
$$

for all i and j and all \mathbf{x} in D. Then any sequence of iterates

$$
\mathbf{x}^{(k+1)}=\mathbf{g}\left(\mathbf{x}^{(k)}\right)
$$

starting from any $\mathbf{x}^{(0)}$ in D converges to a unique fixed point \mathbf{p} in D and

$$
\left\|\mathbf{x}^{(k)}-\mathbf{p}\right\|_{\infty} \leq \frac{K^{k}}{1-K}\left\|\mathbf{x}^{(1)}-\mathbf{x}^{(0)}\right\|_{\infty}
$$

Newton's Method

Let

$$
\mathbf{f}(\mathbf{x})=\left[\begin{array}{c}
f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
\vdots \\
f_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{array}\right]
$$

be a function from \mathbb{R}^{n} to \mathbb{R}^{n}. We say that $\mathbf{f}(\mathbf{x})$ has a root at \mathbf{x} if $\mathbf{f}(\mathbf{x})=\mathbf{0}$.
We are going to try to construct a root finding algorithm by constructing an argument that is analagous to the argument in chapter 2 that led to Newton's method.

Here is an analog of a theorem we saw in chapter 2.
Theorem Let \mathbf{p} be a solution of $\mathbf{g}(\mathbf{x})=\mathbf{x}$. Suppose that a number $\delta>0$ exists with

1. $\frac{\partial g_{i}}{\partial x_{j}}$ is continuous on $N_{\delta}=\{\mathbf{x}\|\mathbf{x}-\mathbf{p}\|<\delta\}$ for each $1 \leq i \leq n$ and $1 \leq j \leq n$.
2. $\frac{\partial^{2} g_{i}(\mathbf{x})}{\partial x_{j} \partial x_{k}}$ is continuous, and $\left|\frac{\partial^{2} g_{i}(\mathbf{x})}{\partial x_{j} \partial x_{k}}\right| \leq M$ for some constant M, whenever $\mathbf{x} \in N_{\delta}$ for each $1 \leq i \leq$ $n, 1 \leq j \leq n$, and $1 \leq k \leq n$.
3. $\frac{\partial g_{i}(\mathbf{p})}{\partial x_{k}}=0$ for each $1 \leq i \leq n$ and $1 \leq k \leq n$.

Then a number $\hat{\delta} \leq \delta$ exists such that the sequence generated by $\mathbf{x}^{(k)}=\mathbf{g}\left(\mathbf{x}^{(k-1)}\right)$ converges quadratically to \mathbf{p} for any
choice of $\mathbf{x}^{(0)}$, provided that $\left\|\mathbf{x}^{(0)}-\mathbf{p}\right\|<\delta$. Moreover,

$$
\left\|\mathbf{x}^{(k)}-\mathbf{p}\right\|_{\infty} \leq \frac{n^{2} M}{2}\left\|\mathbf{x}^{(k-1)}-\mathbf{p}\right\|_{\infty}
$$

for each $k \geq 1$.
We can use this theorem to construct Newton's method on \mathbb{R}^{n} by seeking an n by n matrix function $\varphi(\mathbf{x})$ such that

$$
\mathbf{g}(\mathbf{x})=\mathbf{x}-\varphi(\mathbf{x}) \mathbf{f}(\mathbf{x})
$$

satisfies the conditions of the theorem. We take partial derivatives of the coordinate functions of $\mathbf{g}(\mathbf{x})$ and see that

$$
\begin{gathered}
\frac{\partial g_{i}(\mathbf{x})}{\partial x_{k}}=1-\sum_{j=1}^{n}\left(\varphi_{i, j}(\mathbf{x}) \frac{\partial f_{j}(\mathbf{x})}{\partial x_{k}}+\frac{\partial \varphi_{i, j}(\mathbf{x})}{\partial x_{k}} f_{j}(\mathbf{x})\right) \text { for } i=k \\
\frac{\partial g_{i}(\mathbf{x})}{\partial x_{k}}=\sum_{j=1}^{n}\left(\varphi_{i, j}(\mathbf{x}) \frac{\partial f_{j}(\mathbf{x})}{\partial x_{k}}+\frac{\partial \varphi_{i, j}(\mathbf{x})}{\partial x_{k}} f_{j}(\mathbf{x})\right) \text { for } i \neq k
\end{gathered}
$$

When \mathbf{p} is a root of $\mathbf{f}(\mathbf{x}), \mathbf{p}$ is a fixed point of $\mathbf{g}(\mathbf{x})$ and we would like to have

$$
\begin{gathered}
0=\frac{\partial g_{i}(\mathbf{p})}{\partial x_{k}}=1-\sum_{j=1}^{n} \varphi_{i, j}(\mathbf{p}) \frac{\partial f_{j}(\mathbf{p})}{\partial x_{k}} \text { for } i=k \\
0=\frac{\partial g_{i}(\mathbf{p})}{\partial x_{k}}=\sum_{j=1}^{n} \varphi_{i j}(\mathbf{p}) \frac{\partial f_{j}(\mathbf{p})}{\partial x_{k}} \text { for } i \neq k
\end{gathered}
$$

If we look closely at these conditions, they tell us that the matrix $\varphi(\mathbf{p})$ is the inverse of the matrix of partial derivatives

$$
J(\mathbf{x})=\left[\begin{array}{cccc}
\frac{\partial f_{1}(\mathbf{x})}{\partial x_{1}} & \frac{\partial f_{1}(\mathbf{x})}{\partial x_{2}} & \cdots & \frac{\partial f_{1}(\mathbf{x})}{\partial x_{n}} \\
\frac{\partial f_{2}(\mathbf{x})}{\partial x_{1}} & \frac{\partial f_{2}(\mathbf{x})}{\partial x_{2}} & \cdots & \frac{\partial f_{2}(\mathbf{x})}{\partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{n}(\mathbf{x})}{\partial x_{1}} & \frac{\partial f_{n}(\mathbf{x})}{\partial x_{1}} & \cdots & \frac{\partial f_{n}(\mathbf{x})}{\partial x_{n}}
\end{array}\right]
$$

evaluated at $\mathbf{x}=\mathbf{p}$. This matrix is the Jacobian matrix for the function $\mathbf{f}(\mathbf{x})$ whose root we are trying to find. The Newton iteration formula is

$$
\mathbf{x}^{(k)}=\mathbf{x}^{(k-1)}-J^{-1}\left(\mathbf{x}^{(k-1)}\right) \mathbf{f}\left(\mathbf{x}^{(k-1)}\right)
$$

