Homotopy

Suppose we are trying to find a root \mathbf{x}^{*} of a nonlinear, vector-valued function $F(\mathbf{x})$:

$$
F\left(\mathbf{x}^{*}\right)=\mathbf{0}
$$

Suppose further that we have an initial guess \mathbf{x}_{0} that approximates the root.
A homotopy is a vector-valued function $G(\lambda, \mathbf{x})$ of a parameter λ and \mathbf{x} with the following characteristics.

1. When $\lambda=0$, the function $G(0, \mathbf{x})$ has a root at \mathbf{x}_{0}.
2. When $\lambda=1$, the function $G(1, \mathbf{x})$ has a root at \mathbf{x}^{*}.

Here is a homotopy that has the desired characteristics.

$$
G(\lambda, \mathbf{x})=\lambda F(\mathbf{x})+(1-\lambda)\left(F(\mathbf{x})-F\left(\mathbf{x}_{0}\right)\right)
$$

Continuation

The continuation problem is the problem of constructing a function $\mathbf{x}(\lambda)$ that can map smoothly from \mathbf{x} $(0)=\mathbf{x}_{0}$ to $\mathbf{x}(1)=\mathbf{x}^{*}$.

If we were able to compute $\mathbf{x}(\lambda)$, its defining characteristic is that

$$
G(\lambda, \mathbf{x}(\lambda))=0
$$

for all λ between 0 and 1 .
Differentiating this equation with respect to λ gives

$$
\frac{\partial G(\lambda, \mathbf{x}(\lambda))}{\partial \lambda}+\frac{\partial G(\lambda, \mathbf{x}(\lambda))}{\partial \mathbf{x}} \mathbf{x}^{\prime}(\lambda)=0
$$

or

$$
\mathbf{x}^{\prime}(\lambda)=-\left(\frac{\partial G(\lambda, \mathbf{x}(\lambda))}{\partial \mathbf{x}}\right)^{-1} \frac{\partial G(\lambda, \mathbf{x}(\lambda))}{\partial \lambda}
$$

This is a nonlinear system of first order differential equations with initial condition $\mathbf{x}(0)=\mathbf{x}_{0}$.

Setting up and solving the system

Bearing in mind that $G(\lambda, \mathbf{x})$ is defined in terms of $F(\mathbf{x})$, the first step in setting up and solving the continuation equations is to substitute the definition

$$
G(\lambda, \mathbf{x})=\lambda F(\mathbf{x})+(1-\lambda)\left(F(\mathbf{x})-F\left(\mathbf{x}_{0}\right)\right)
$$

into the equation

$$
\mathbf{x}^{\prime}(\lambda)=-\left(\frac{\partial G(\lambda, \mathbf{x}(\lambda))}{\partial \mathbf{x}}\right)^{-1} \frac{\partial G(\lambda, \mathbf{x}(\lambda))}{\partial \lambda}
$$

When we do this we discover two things.

$$
\begin{gathered}
\frac{\partial G(\lambda, \mathbf{x}(\lambda))}{\partial \mathbf{x}}=\lambda \frac{\partial F(\mathbf{x}(\lambda))}{\partial \mathbf{x}}+(1-\lambda) \frac{\partial F(\mathbf{x}(\lambda))}{\partial \mathbf{x}}=\frac{\partial F(\mathbf{x}(\lambda))}{\partial \mathbf{x}}=J(\mathbf{x}(\lambda)) \\
\frac{\partial G(\lambda, \mathbf{x}(\lambda))}{\partial \lambda}=F(\mathbf{x})-\left(F(\mathbf{x})-F\left(\mathbf{x}_{0}\right)\right)=F\left(\mathbf{x}_{0}\right)
\end{gathered}
$$

Thus, the system simplifies down to

$$
\mathbf{x}^{\prime}(\lambda)=-(J(\mathbf{x}(\lambda)))^{-1} F\left(\mathbf{x}_{0}\right)
$$

Once we have set up the system of equations, we can solve it by any of our usual methods, such as the Runge-Kutta method.

