
The decision problem

In computer science we deal with a huge variety of problems. The theory of computation seeks to minimize
this complexity by instead studying exactly one problem, called the decision problem. The decision problem
is su���ciently rich and complex to serve as a means for studying many important questions in the theory of
computation.

Here are the de��nitions that play a role in the decisionproblem.

De��nition An alphabet Σ is a set of characters.

De��nition The universe Σ* is the set of all strings x that canbe formed fromthe characters in the alphabetΣ.

De��nition A language L is a set of strings inΣ*.

The decision problem for a language L is the problemof determining whether or not an arbitrary string x in
Σ* is inL.

Some examples

Languages candi�fer considerably in complexity. Here are some examples, ranging fromsimple languages to
more complex languages. In the examples below

Inall of the examples belowΣ = {'0','1'}. The notation ak stands for a sequence of k copies of the letter a.

L1 = { x | x contains anevennumber of 1s }

L2 = { 0n1n | n ≥ 0 }

L3 = { 0n 1n
2
| n ≥ 0 }

L4 = { 1p | p is a primenumber }

Deciders

In the theory of computation we imagine constructing algorithms that can solve the decision problem for
various languages and we study the runtime e���ciency of those algorithms. The runtime e���ciency of an
algorithm that decides a language is measured as a function of the length of the string the algorithm is
decide.

Here is an example. A fairly obvious decision algorithmfor the language

L2 = { 0n1n | n ≥ 0 }

wouldwork something like this:

1. Make one pass through x to con��rmthat x is of the form0j1k.

2. Make a second pass through x that counts the number of 0s and 1s in x.

3. Check that the number of 0smatches the number of 1s.

The runtime complexity of this algorithmisO(|x|), which is linear in the length of the input string x.

Converting problems to languages

The language decision problem is su���ciently ./exible to serve as a means for studying many problems in
computer science. Here is a typical example.

A standard problem in graph theory is the Hamiltonian cycle problem. In this problem you are given a
directed graphG and you are asked to determinewhether or not the graphhas aHamiltonian cycle, which is
a cycle in the graph that visits each vertex in the graph exactly once.

The picture belowshows anexample of a graph that does have such a cycle and one that does not.

1

TheHamiltonian cycle problemcanbe rephrased as a language decisionprobleminvolving this language:

HAM-CYCLE = {<G> | G encodes a graph and that graph contains aHamiltonian cycle. }

The class P

Languages can vary considerably in their complexity, so the theory of computation divides languages into
broad classes based on their complexity. The ��rst of these classes is the class P, the class of languages
decidable in polynomial time.

De��nition A language L is in P if there exists a decision algorithmthat can decide whether or not an input
string x is inL in timeO(|x|c) for some positive integer c.

The class NP

The problemwith the de��nition of the class P is that it hinges on having a polynomial time algorithm to
decide the language. What if you don't know how to build a polynomial time decider? This is a real issue,
becausemany problems in computer science, including theHamiltonian path problem, don't currently have
e���cient decision algorithms.

Many problems, like theHamiltonian cycle problem, have fairly obvious ine���cient decision algorithms. For
example, here is a pretty crudy decider forHAM-CYCLE.

On input<G>:

1. Check that<G> encodes a graph.

2. Number the vertices inG from1 to |V|.

3. Generate every possible permutation p of the list (1,2,...,|V|).

4. For eachpermutation p check to see if there is a path inG that passes through the listed
vertices in the order given.

5. If you ��nd a permutation thatworks, return true.

6. If you ��ndno permutation thatworks, return false.

Since this decider does a brute force search through a space of permutations it will take time that is
2

exponential in the size of the input graphG.

What do we do in cases where we can't construct a polynomial time decider for a language? Do we give up
and throwup our hands and say that the language is not in P? Howdo know that next week some brilliant
computer scientist somewherewon't comeupwith a polynomial time algorithmto solve the problem?

After studying a range of problems in computer science formany decades, computer scientists have come to
suspect that certain problems like theHamiltonian path problemwill never have polynomial time solutions.
The only problemwith this at this point in time is thatno one knowshowto prove that certainproblemswill
never be decidable in polynomial time.

Computer scientists have responded to this conundrumby trying to make amore detailed study of problem
types. As part of this study they have introduced classes of problems that are "just outside of P" in ane�fort to
understandwhat separates languages inP fromlanguages that are not inP.

Themost important of thesenewclasses is the classNP. TheN inNPstands fornondeterministic. Languages
inNPare decidable inpolynomial time providedwe are allowed to use a limited amountof nondeterministic
behavior in the decider. For example, here is a nondeterministic, polynomial time decider forHAM-CYCLE:

On input<G>:

1. Check that<G> encodes a graph.

2. Number the vertices inG from1 to |V|.

3. Guess a permutation p of the list (1,2,...,|V|).

4. Check to see if there is a path inG that passes through the listed vertices in the permutation
p.

5. If there is such a path, return true.

6. Return false.

Nondeterministic behavior is a strange thing to make use of, because no real computer scientist would
develop analgorithmthat includes a step that says "nowguess ananswer".

Fortunately, there is a way to work around the use of nondeterminism in an algorithm. The method is to
essentially make the guess external to the algorithm. This leads to the use of the concept of a certi"#cate. A
certi��cate is some external piece of data that the algorithmcanuse to help it solve the decisionproblem. This
leads to the following alternative de��nition for the class NP:

De��nition A language L is in the class NP if there exists an algorithm that takes a string x and a certi��cate
string y as its input and inpolynomial time uses both x and the certi��cate to determinewhether ornot x is in
L.

Here is a concrete example. The languageHAM-CYCLE is in the class NP. The certi��catewe use is the list of
vertices in theHamiltonian cycle. Given an input string x = <G>, we use the certi��cate to verify that the list
of vertices forms a valid Hamiltonian cycle in G. This veri��cation is relatively straightforward and can be
carried out in timeO(|V|), which is linear in the size of the inputs.

NP-complete languages

The next step in the study of classes of languages it to try to ��nd the outer boundary of the class NP. To ��nd
this, we need someway tomeasure the relatively di���culty of pairs of languages.

Amechanismthat allows us to compare two languages and e�fectively say that one language is "harder" than
another is the relationof polynomial time reduction.

De��nition A language A is polynomial time reducible to a language B (written A ≤P B) if there exists a
polynomial time algorithm f thatmaps strings x inA to strings f(x) inB.More speci��cally, wemust have

f(x) ∈ B if an only if x∈ A

The relationship of polynomial time reducibility does in fact work as a measure of relative di���culty. The

3

main support for this is the following lemma:

Lemma If B is in the class PandA ≤P B thenA is also inP.

The proof of this is as follows. Since B is in P, theremust be an algorithmd that decidesmembership in B in
polynomial time. Here then is a decider forA:

On input x:

1. Compute f(x). (This takes time polynomial in the length of x.)

2. Run d on f(x). (This takes time polynomial in the length of f(x).)

3. Returnwhat d returned.

A variant on this lemma is the observation that if A is not in P and A ≤P B then B can not possibly be in P,
since we could use the construction above to make a polynomial time decider for A if B had a polynomial
time decider. This observation would be a handy way to show that certain problems can not possibly have
polynomial time solutions: all we would need is one instance of a language which is not in P and a way to
connect that problem to others via polynomial timemappings. The only problemwith this approach is that
no one has found away to showthat there is some language inNP that can not possibly be in P. (This is the
famous P≠NPproblem.)

NP-complete problems

Since no one has found a way to show that there is a language in NP that is not in P, the theory of
computation has had to fall back on an alternative strategy. In this stategy we seek out and study the
"hardest" problems inNP. The following de��nition seeks to formalize this concept of a "hard" NPproblem.

De��nition A language L is said to beNP-complete if L is inNPandM ≤P L for all other languagesM inNP.

Since the relation≤P is a transitive relation, we also have the following

Lemma If a language L is NP-complete and L ≤P M for some other language M in NP, then M is also
NP-complete.

Researchers have actually succeeded in ��ndingmany languages that are NP-complete. What this requires is
��nding a ��rst problem that is NP-complete and then using the lemma to connect that initial problem to a
chain of other problems. In the section below I will show several examples from the text that illustrate how
to set up themappings.

An initial NP-complete problem

There are several problems one canuse as a starting point for constructing a chainofNP-complete problems.
The hard part is showing that the ��rst problem in the chain is NP-complete. This is somewhat beyond the
scope of the discussionhere: if you take the Theory of Computation course next year I will showa proof that
a particular language is NP-complete.

For now, I will select one knownNP-complete language as a starting point and then showhow to map that
initial problemto a chain of others.

The initial language I will use is known as 3-CNF-SAT. Strings in 3-CNF-SAT are logical formulas made up
variables and logical operators. The formulas are limited to a particular structure: each formula ismadeup of
the logical and of several clauses, and each clause is composed of exactly three terms combined with logical
ors. The termsmust be either variables or their negations. Here is an example of logical formula that meets
these format rules:

(a ∨ ¬b ∨ d) ∧ (¬a ∨ ¬b ∨ ¬c) ∧ (b ∨ c ∨ d) ∧ (¬a ∨ c ∨ ¬d)

A formula is satis"#able if there is some assignment of truth values to the variables that causes the entire
formula to evaluate to true. For example, the formula above is satis��able by a = T, b = T, c = F, d = F.

CLIQUE is NP-complete

In an undirected graph G a clique of size k is a subset of k vertices where every vertex is connected to every

4

other vertex in the group. The language

CLIQUE = {<G,k> | G contains a clique of size k}

is known to be NP-complete. CLIQUE is in NP because a certi��cate for a particular graph is the list of k
vertices that form a clique. We can check in polynomial time that each vertex in the subset is connected to
each one of the others. To showthatCLIQUE is NP-complete, we showthat 3-CNF-SAT ≤P CLIQUE.

The picture belowshows how this mapping works. Given any formula in 3-CNF-SAT we construct a special
graph. The graph is composed of clusters of vertices, with one cluster for clause in a formula. The vertices in
clusters are connected to all of the vertices in other clusters that they are compatible with. To vertices are
compatible if they use di�ferent variables or if they connect to terms with the same variables or two terms
withnegations of the same variables.

If we set k equal to the number of clauses, we see that the formula has a satisfying assignment if and only if
the graphwe constructed from the formula has a clique of size k. To make a satisfying assignment wemust
have at least one term in each clause that evaluates to true. If we select one true term in each clause the
corresponding vertices in the graphmust forma clique of size k because all of the vertices we have selected
are compatible with each other and hence must have edges in the graph connecting them. Conversely, any
clique of size k in the graph must use exactly one vertex from each group, since vertices in groups are not
connected to each other. If we assign true values to terms whose vertices are in the clique we end up with a
satisfying assignment for the original formula.

VERTEX-COVER

A vertex cover in a graph is a set of vertices that cover the edges: each edge in the graph touches at least one
of the vertices in the cover. This leads to a language

VERTEX-COVER = {<G,k> | G has a vertex cover of size k}

Wecan showthatVERTEX-COVER is NP-complete via the reductionCLIQUE ≤P VERTEX-COVER.

The picture belowshows howthemappingworks.

5

The graph on the left is a graphwith a clique of a particular size. In the graph on the left there is a clique of
size 4 made up of the light gray vertices.We formthe graph on the right by using the same set of vertices but
replacing the edges by the complement of the set of edges in the original graph. The newgraphwill have an
edge between two vertices only if the original graphdid not have anedge connecting those two vertices.

Suppose that the original graphhas a clique of size k. We claimthat the set of all vertices not in that clique in
the complement graph forma vertex cover of size |V| - k. Consider any edge in the newgraph. This edge does
not connect two vertices in the clique, since those vertices are all fully connected and edges that connect
them would have been removed when we formed the complement. Thus, at least one of the two vertices
connected by that edgemust be outside the clique, and that vertex can cover that edge. Conversely, suppose
the new graph has a vertex cover of size |V| - k. I claim that the set of vertices not in the cover must have
formed a clique in the original graph, because the newgraph contains no edges connecting those vertices (if
it did, that edge would not be covered). Whenwe go backward from the complement graph to the original,
all of the vertices not in the cover will have edges restored between them and we will be back to having a
clique.

HAM-CYCLE

Finally, we can show that HAM-CYCLE is NP-complete via a reduction from VERTEX-COVER. The
reduction is very complex, and is covered in detail in chapter 34. Below are the two key pictures that
illustrate howthe constructionworks.

6

7

