The decision problem

In computer science we deal with a huge variety of problems. The theory of computation seeks to minimize
this complexity by instead studying exactly one problem, called the decision problem. The decision problem
is sufficiently rich and complex to serve as a means for studying many important questions in the theory of
computation.

Here are the definitions that play a role in the decision problem.
Definition An alphabet X is a set of characters.

Definition The universe T is the set of all strings x that can be formed from the characters in the alphabet .

Definition A language L is a set of strings in .

T*he decision problem for a language L is the problem of determining whether or not an arbitrary string x in
2 isinL.

Some examples

Languages can differ considerably in complexity. Here are some examples, ranging from simple languages to
more complex languages. In the examples below

In all of the examples below = = {'0’,1'}. The notation a* stands for a sequence of k copies of the letter a.
L, = { x| x contains an even number of 1s }

L,={0"1"|n>0}

Ly={0"1"|n>0}

L, ={1?| p is a prime number }

Deciders

In the theory of computation we imagine constructing algorithms that can solve the decision problem for
various languages and we study the runtime efficiency of those algorithms. The runtime efficiency of an
algorithm that decides a language is measured as a function of the length of the string the algorithm is
decide.

Here is an example. A fairly obvious decision algorithm for the language
L,={01"|n>0}
would work something like this:
1. Make one pass through x to confirm that x is of the form 01~
2. Make a second pass through x that counts the number of 0s and 1s in x.
3. Check that the number of 0s matches the number of 1s.
The runtime complexity of this algorithm is O(|x|), which is linear in the length of the input string x.
Converting problems to languages

The language decision problem is sufficiently flexible to serve as a means for studying many problems in
computer science. Here is a typical example.

A standard problem in graph theory is the Hamiltonian cycle problem. In this problem you are given a
directed graph G and you are asked to determine whether or not the graph has a Hamiltonian cycle, which is
a cycle in the graph that visits each vertex in the graph exactly once.

The picture below shows an example of a graph that does have such a cycle and one that does not.
1

(a) (b)

The Hamiltonian cycle problem can be rephrased as a language decision problem involving this language:
HAM-CYCLE = {<G> | G encodes a graph and that graph contains a Hamiltonian cycle. }
The class P

Languages can vary considerably in their complexity, so the theory of computation divides languages into
broad classes based on their complexity. The first of these classes is the class P, the class of languages
decidable in polynomial time.

Definition A language L is in P if there exists a decision algorithm that can decide whether or not an input
string x is in L in time O(|x|c) for some positive integer c.

The class NP

The problem with the definition of the class P is that it hinges on having a polynomial time algorithm to
decide the language. What if you don't know how to build a polynomial time decider? This is a real issue,
because many problems in computer science, including the Hamiltonian path problem, don’t currently have
efficient decision algorithms.

Many problems, like the Hamiltonian cycle problem, have fairly obvious inefficient decision algorithms. For
example, here is a pretty crudy decider for HAM-CYCLE.

On input <G>:
1. Check that <G> encodes a graph.
2. Number the vertices in G from1 to |V].
3. Generate every possible permutation p of the list (1,2,...,|V]).
4

. For each permutation p check to see if there is a path in G that passes through the listed
vertices in the order given.

5. If you find a permutation that works, return true.
6. If you find no permutation that works, return false.

Since this decider does a brute force search through a space of permutations it will take time that is
2

exponential in the size of the input graph G.

What do we do in cases where we can't construct a polynomial time decider for a language? Do we give up
and throw up our hands and say that the language is not in P? How do know that next week some brilliant
computer scientist somewhere won't come up with a polynomial time algorithm to solve the problem?

After studying a range of problems in computer science for many decades, computer scientists have come to
suspect that certain problems like the Hamiltonian path problem will never have polynomial time solutions.
The only problem with this at this point in time is that no one knows how to prove that certain problems will
never be decidable in polynomial time.

Computer scientists have responded to this conundrum by trying to make a more detailed study of problem
types. As part of this study they have introduced classes of problems that are "just outside of P” in an effort to
understand what separates languages in P from languages that are not in P.

The most important of these new classes is the class NP. The N in NP stands for nondeterministic. Languages
in NP are decidable in polynomial time provided we are allowed to use a limited amount of nondeterministic
behavior in the decider. For example, here is a nondeterministic, polynomial time decider for HAM-CYCLE:

On input <G>:
1. Check that <G> encodes a graph.
2. Number the vertices in G from1 to |V].
3. Guess a permutation p of the list (1,2,...,|V]).

4. Check to see if there is a path in G that passes through the listed vertices in the permutation
p-

5. If there is such a path, return true.
6. Return false.

Nondeterministic behavior is a strange thing to make use of, because no real computer scientist would
develop an algorithm that includes a step that says "now guess an answer".

Fortunately, there is a way to work around the use of nondeterminism in an algorithm. The method is to
essentially make the guess external to the algorithm. This leads to the use of the concept of a certificate. A
certificate is some external piece of data that the algorithm can use to help it solve the decision problem. This
leads to the following alternative definition for the class NP:

Definition A language L is in the class NP if there exists an algorithm that takes a string x and a certificate
string y as its input and in polynomial time uses both x and the certificate to determine whether or not x is in
L.

Here is a concrete example. The language HAM-CYCLE is in the class NP. The certificate we use is the list of
vertices in the Hamiltonian cycle. Given an input string x = <G>, we use the certificate to verify that the list
of vertices forms a valid Hamiltonian cycle in G. This verification is relatively straightforward and can be
carried out in time O(|V]), which is linear in the size of the inputs.

NP-complete languages

The next step in the study of classes of languages it to try to find the outer boundary of the class NP. To find
this, we need someway to measure the relatively difficulty of pairs of languages.

A mechanism that allows us to compare two languages and effectively say that one language is "harder” than
another is the relation of polynomial time reduction.

Definition A language A is polynomial time reducible to a language B (written A <, B) if there exists a
polynomial time algorithm f that maps strings x in A to strings f(x) in B. More specifically, we must have

fix) e Bifanonlyifxe A
The relationship of polynomial time reducibility does in fact work as a measure of relative difficulty. The

3

main support for this is the following lemma:
Lemma If B is in the class Pand A <, B then A is also in P.

The proof of this is as follows. Since B is in P, there must be an algorithm d that decides membership in B in
polynomial time. Here then is a decider for A:

On input x:
1. Compute f{x). (This takes time polynomial in the length of x.)
2. Run d on f{x). (This takes time polynomial in the length of f(x).)
3. Return what d returned.

A variant on this lemma is the observation that if A is not in P and A <, B then B can not possibly be in P,
since we could use the construction above to make a polynomial time decider for A if B had a polynomial
time decider. This observation would be a handy way to show that certain problems can not possibly have
polynomial time solutions: all we would need is one instance of a language which is not in P and a way to
connect that problem to others via polynomial time mappings. The only problem with this approach is that
no one has found a way to show that there is some language in NP that can not possibly be in P. (This is the
famous P # NP problem.)

NP-complete problems

Since no one has found a way to show that there is a language in NP that is not in P, the theory of
computation has had to fall back on an alternative strategy. In this stategy we seek out and study the
"hardest” problems in NP. The following definition seeks to formalize this concept of a "hard” NP problem.

Definition A language L is said to be NP-complete if L is in NP and M <, L for all other languages M in NP.
Since the relation < is a transitive relation, we also have the following

Lemma If a language L is NP-complete and L <, M for some other language M in NP, then M is also
NP-complete.

Researchers have actually succeeded in finding many languages that are NP-complete. What this requires is
finding a first problem that is NP-complete and then using the lemma to connect that initial problem to a
chain of other problems. In the section below I will show several examples from the text that illustrate how
to set up the mappings.

An initial NP-complete problem

There are several problems one can use as a starting point for constructing a chain of NP-complete problems.
The hard part is showing that the first problem in the chain is NP-complete. This is somewhat beyond the
scope of the discussion here: if you take the Theory of Computation course next year I will show a proof that
a particular language is NP-complete.

For now, I will select one known NP-complete language as a starting point and then show how to map that
initial problem to a chain of others.

The initial language I will use is known as 3-CNF-SAT. Strings in 3-CNF-SAT are logical formulas made up
variables and logical operators. The formulas are limited to a particular structure: each formula is made up of
the logical and of several clauses, and each clause is composed of exactly three terms combined with logical
ors. The terms must be either variables or their negations. Here is an example of logical formula that meets
these format rules:

(avbvd)A(nav-b Vvac)A(bvevd)A(navVevd)

A formula is satisfiable if there is some assignment of truth values to the variables that causes the entire
formula to evaluate to true. For example, the formula above is satisfiablebya =T, b =T,c=F,d = F.

CLIQUE is NP-complete

In an undirected graph G a clique of size k is a subset of k vertices where every vertex is connected to every
4

other vertex in the group. The language
CLIQUE = {<G,k> | G contains a clique of size k}

is known to be NP-complete. CLIQUE is in NP because a certificate for a particular graph is the list of k
vertices that form a clique. We can check in polynomial time that each vertex in the subset is connected to
each one of the others. To show that CLIQUE is NP-complete, we show that 3-CNF-SAT <, CLIQUE.

The picture below shows how this mapping works. Given any formula in 3-CNF-SAT we construct a special
graph. The graph is composed of clusters of vertices, with one cluster for clause in a formula. The vertices in
clusters are connected to all of the vertices in other clusters that they are compatible with. To vertices are
compatible if they use different variables or if they connect to terms with the same variables or two terms
with negations of the same variables.

C] = X1V XV X3

C3:.X1VX2\/X3

C2:_'X1\/X2\/X3

If we set k equal to the number of clauses, we see that the formula has a satisfying assignment if and only if
the graph we constructed from the formula has a clique of size k. To make a satisfying assignment we must
have at least one term in each clause that evaluates to true. If we select one true term in each clause the
corresponding vertices in the graph must form a clique of size k because all of the vertices we have selected
are compatible with each other and hence must have edges in the graph connecting them. Conversely, any
clique of size k in the graph must use exactly one vertex from each group, since vertices in groups are not
connected to each other. If we assign true values to terms whose vertices are in the clique we end up with a

satisfying assignment for the original formula.
VERTEX-COVER

A vertex cover in a graph is a set of vertices that cover the edges: each edge in the graph touches at least one
of the vertices in the cover. This leads to a language

VERTEX-COVER = {<G,k> | G has a vertex cover of size k}
We can show that VERTEX-COVER is NP-complete via the reduction CLIQUE <p VERTEX-COVER.
The picture below shows how the mapping works.

—®

(a) (b)

The graph on the left is a graph with a clique of a particular size. In the graph on the left there is a clique of
size 4 made up of the light gray vertices. We form the graph on the right by using the same set of vertices but
replacing the edges by the complement of the set of edges in the original graph. The new graph will have an
edge between two vertices only if the original graph did not have an edge connecting those two vertices.

Suppose that the original graph has a clique of size k. We claim that the set of all vertices not in that clique in
the complement graph form a vertex cover of size |V| - k. Consider any edge in the new graph. This edge does
not connect two vertices in the clique, since those vertices are all fully connected and edges that connect
them would have been removed when we formed the complement. Thus, at least one of the two vertices
connected by that edge must be outside the clique, and that vertex can cover that edge. Conversely, suppose
the new graph has a vertex cover of size |V] - k. I claim that the set of vertices not in the cover must have
formed a clique in the original graph, because the new graph contains no edges connecting those vertices (if
it did, that edge would not be covered). When we go backward from the complement graph to the original,
all of the vertices not in the cover will have edges restored between them and we will be back to having a
clique.

HAM-CYCLE

Finally, we can show that HAM-CYCLE is NP-complete via a reduction from VERTEX-COVER. The
reduction is very complex, and is covered in detail in chapter 34. Below are the two key pictures that
illustrate how the construction works.

(@)
(b)

