
Moving beyond simple backpropagation

The backpropagation era eventually ended when researchers realized that the backpropagation algorithm
by itself was not powerful enough to solve more difficult problems. Researchers realized that one
requirement for solving more difficult problems was to use networks with more hidden layers.
Unfortunately, simple backpropagation alone does not work well on such deep networks.

A series of small improvements

Over time, various researchers came up with a lengthy list of small improvements that made it easier for
backpropagation to work well with deep networks. Some of these improvements included

• Normalization

• Better random weight initialization

• Better activation functions

• Better loss functions

• Improvements to gradient descent

• Specialized network architectures

• Transfer learning

Collectively, these small improvements helped usher in the current deep learning era.

These notes will introduce you to some of these improvements.

Normalization

All problems involve having a network take as its input a list of features. In some cases, the distinct
features in the input vector will vary quite a bit in both their magnitude and their variability. This in turn
causes problems for gradient descent, because it may force the network to assign larger weights to
connections coming from inputs that have smaller values and smaller weights to connections coming
from inputs that typical have larger values. This in turn has the effect of making the loss surface more
complex, which in turn will make it harder for gradient descent to find a minimum.

The solution to these problems is to use a normalization process on the input data. The normalization
process consists of two steps:

1. For each input feature compute the mean value μ and the standard deviation σfor that
feature across each input in the training set.

1



2. Replace each feature x with (x - μ)/σ

After normalization each feature will have an average value of 0. This in turn makes it easier to build a
network that has no bias on any of its hidden units.

Beyond applying normalization to the input layer researchers eventually also realized that it can be
useful to apply normalization deeper in the network as well. We will eventually see how to use a process
called batch normalization to normalize the outputs of a hidden layer.

Better weight initialization

When we set up a neural network one of the things we have to do is to assign an initial set of weights to
all of the connections. In the backpropagation era this was typically done by assigning weights randomly
to all of the connections. Eventually researchers learned that this simple algorithm for weight
initialization could cause problems for some network architectures. One problem that arose was that
units in different hidden layers and sometimes even units within the same hidden layer would differ in
the number of input connections they had. If one unit has more incoming connections than another and
the weights to all of these connections are assigned randomly, the unit with more incoming connections
would see summed inputs that had more extreme statistical properties.

Eventually researchers realized that they needed to scale the initial random weights by dividing the
initial random weights by square root of the fan in factor for the unit the connection runs to. The fan in
factor for a hidden unit is simply the count of how many connections come in to that unit.

Better activation functions

The backpropagation era introduced the widespread use of the sigmoid activation function.

a(x) =
1 + e-x

1

This activation function replaced the simple threshold activation function of the Perceptron era, since the

2



latter is not differentiable.

Over time, researchers realized that the sigmoid activation function had a number of shortcomings:

• It is harder to compute, and has a complicated looking derivative. These problems
made both forward propagation and backpropagation more expensive.

• It has a derivative that becomes quite small as you move away from 0. This led to what
was known as the vanishing gradients problem, which caused backpropagation to stall
in some scenarios.

To work around these problems researchers started to experiment with alternative activation functions.
Over time, an alternative that emerged as particularly successful in practice was the rectified linear
activation function, or ReLU for short:

ReLU has a number of advantages. It is non-linear, like sigmoid, but is significantly easier to compute
with. Further, ReLU does not suffer from the vanishing gradients problem, as long as the unit's inputs
pass the 0 threshold at which ReLU turns on.

Better loss functions

In the backpropagation era the most commonly used loss function was the mean squared error. To
compute the loss we would feed a set of inputs to a network and generate a list of output vectors o⇀. The
loss function would compare the components of the output vectors to a corresponding set of target

vectors t
⇀

that we wanted the network to produce:

L(w⇀) =∑
i = 1

n

k
1∑

j = 1

k

(oi,j - ti,j)
2

Here oi,j is the jth component of the ith output vector.

Over time researchers began to discover that using the same loss measure for every network and every
application was not optimal. Instead, it made more sense to match the loss function to the application.

3



A well-known example of this optimization occurs in networks that perform classification tasks. In such
a network we seek to categorize inputs into one of k possible categories. To do this, we set up a network
with k output units and interpret the output as selecting a particular category by selecting the output unit
with the highest activation value and assigning the input to that category. For applications involving
categorization researchers developed an alternative loss function, the categorical cross entropy loss
function:

L(w⇀) =∑
i = 1

n

∑
j = 1

k

- ti,j log pi,j

Here pi,j is the jth component of the ith output vector after the components of the output vector have been
rescaled so that the sum of the elements of each output vector is 1. The target values ti,j indicate the
correct category for the ith input by having a 1 in the position for the correct category and a 0 in all other
positions.

Researchers learned that using a loss function that was more closely suited to the task at hand made
backpropagation converge more quickly to a good set of weights.

Improvements to gradient descent

The gradient descent algorithm is the heart of network learning in backpropagation. One common
problem that gradient descent suffers from is the problem of local minima in the loss surface. To keep
gradient descent from descending into a shallow local minimum and getting stuck there, we can
introduce the concept of momentum to the gradient descent process.

The original gradient descent algorithm uses an update rule that can be written as

V
⇀

= - η ∂L(W
⇀

)

∂W
⇀

W
⇀

= W
⇀

+ V
⇀

Gradient descent with momentum updates these rules to

V
⇀

= β V
⇀

- η ∂L(W
⇀

)

∂W
⇀

W
⇀

= W
⇀

+ V
⇀

The new term β V
⇀

with β < 1 acts as a memory term to help us preserve at least some of the past history

in the V
⇀

term. This then encourages gradient descent to typically move past shallow local minima

4



because the descent vector remembers some of the direction that lead us toward the mimimum, which in
turn will cause gradient descent of slightly overshoot the minimum. For shallow minima this is sufficient
to allow us to escape the influence of the shallow minimum.

Another problem that can occur in loss landscapes is that the landscape ends up being steeper in some
directions than others. This leads to landscape features such as valleys with steep walls. As gradient
descent works on descending down the valley the steep walls can cause us to bounce up and down the
walls as we descend, wasting a lot of time along the way bounding up and down the walls. We can damp
some of this movement out by scaling the partial derivative terms by a factor that retains a historical
memory of the relative size of that particular partial derivative. The AdaGrad algorithm replaces the
weight update rule in backpropagation with

Ai = Ai + (
∂L(W

⇀
)

∂wi )

2

wi = wi -
Ai

η ∂L(W
⇀

)
∂wi

A slight improvement to AdaGrad is the RMSProp algorithm, which uses a decay process to give the Ai
term a decaying memory of past values of the partial derivative:

Ai = ρ Ai + (1 - ρ)
(
∂L(W

⇀
)

∂wi )

2

wi = wi -
Ai

η ∂L(W
⇀

)
∂wi

Finally, the Adam algorithm mixes together the concepts of momemtum and the AdaGrad/RMSProp
adjustments.

Ai = ρ Ai + (1 - ρ)
(
∂L(W

⇀
)

∂wi )

2

Fi = ρf Fi + (1 - ρf) ∂L(W
⇀

)
∂wi

wi = wi -
Ai

η Fi

Specialized network architectures

5



As the field of neural networks expanded into different application areas researchers began to develop a
host of specialized network architectures to address the needs of different problems. Over the remainder
of this term we will be studying many of these specialized applications and we will meet new network
architectures along the way.

The process really kicked into high gear in the deep learning era. As researchers realized the benefits of
building deeper networks with more layers, they began to develop ever more elaborate specialized
architectures for these deeper networks.

Transfer learning

Another widely used strategy in the deep learning era involves training a network to solve one problem
and then transferring part of that network over to a new network that is meant to solve a closely related
problem. The idea is that if we have already learned a set of weights for part of the network, those
pretrained weights can save us from having to relearn the weights for that part of the new network.

We will first see this strategy being employed successfully later on in the section on computer vision
applications.

6


